Skip to main content Accessibility help

The influence of in situ formed precipitates on the plasticity of Fe–Nb–B–Cu bulk metallic glasses

  • Jin Man Park (a1), Do Hyang Kim (a2), Mihai Stoica (a3), Norbert Mattern (a3), Ran Li (a4) and Jürgen Eckert (a5)...


Improved room temperature plasticity was achieved by microalloying Cu in a series of (Fe71Nb6B23)100−xCux (x = 0, 0.25, 0.5, 0.75, and 1) glass matrix alloys with tunable size and volume fraction of precipitates composed of α-Fe and Fe23B6 phases. When ∼10-nm-sized nano-scale precipitates are formed with a size comparable to the shear bandwidth by controlling the added content of Cu, the (Fe71Nb6B23)99.5Cu0.5 alloy exhibits a maximum plastic strain of 4.3 ± 0.8% with pronounced multiple shear banding. A further increase in the size of the precipitates up to micrometer scale results in catastrophic fracture accompanied with irregular cracks, revealing that the fracture mechanism of the different alloys is controlled by the precipitate size.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).
2.Johnson, W.L.: Bulk glass-forming metallic alloys. MRS Bull. 24, 42 (1999).
3.Ashby, M.F. and Greer, A.L.: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).
4.Schuh, C.A. and Lund, A.C.: Atomistic basis for the plastic yield criterion of metallic glass. Nat. Mater. 2, 449 (2003).
5.Decker, R.F.: Alloy design using second phase. Metall. Trans. 4, 2495 (1973).
6.Cahn, R.W. and Haasen, P.: Physical Metallurgy (North-Holland, Amsterdam, 1996).
7.Choi-Yim, H., Busch, R., Köster, U., and Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).
8.Lee, J.C., Kim, Y.C., Ahn, J.P., and Kim, H.S.: Enhanced plasticity in a bulk amorphous matrix composite: Macroscopic and microscopic viewpoint studies. Acta Mater. 53, 129 (2005).
9.Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Demetrious, M.D., and Johnson, W.L.: Designing bulk metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).
10.Pauly, S., Gorantla, S., Wang, G., Kühn, U., and Eckert, J.: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473 (2010).
11.Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band formation and enhanced plasticity of bulk metallic glasses. Phys. Rev. Lett. 84, 2901 (2000).
12.Fan, C., Ott, R.T., and Hufnagel, T.C.: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 (2002).
13.Park, J.M., Kim, D.H., Kim, K.B., Fleury, E., Lee, M.H., Kim, W.T., and Eckert, J.: Enhancement of plasticity in Ti-rich Ti-Zr-Be-Cu-Ni-Ta bulk glassy alloy via introducing the structural inhomogeneity. J. Mater. Res. 23, 2984 (2008).
14.Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).
15.Lewandowski, J.J. and Greer, A.L.: Temperature rise at shear bands in metallic glass. Nat. Mater. 5, 15 (2006).
16.Guo, H., Yan, P.F., Wang, Y.B., Tan, J., Zhang, Z.F., Sui, M.L., and Ma, E.: Tensile ductility and necking of metallic glass. Nat. Mater. 6, 735 (2007).
17.Pekarskaya, E., Kim, C.P., and Johnson, W.L.: In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. J. Mater. Res. 16, 2513 (2001).
18.Chen, Y.M., Ohkubo, T., Mukai, T., and Hono, K.: Structure of shear bands in Pd40Ni40P20 bulk metallic glass. J. Mater. Res. 24, 1 (2009).
19.Shi, Y. and Falk, M.L.: Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett. 95, 095502 (2005).
20.Zhang, Y. and Greer, A.L.: Thickness of shear bands in metallic glasses. Appl. Phys. Lett. 89, 071907 (2006).
21.Matsumoto, R. and Miyazaki, N.: The critical length of shear bands in metallic glass. Scr. Mater. 59, 107 (2008).
22.Park, J.M., Wang, G., Li, R., Mattern, N., Eckert, J., and Kim, D.H.: Enhancement of plastic deformability in Fe-Ni-Nb-B bulk glassy alloys by controlling the Ni-to-Fe concentration ratio. Appl. Phys. Lett. 96, 031905 (2010).
23.Makino, A., Li, X., Yubuta, K., Chang, C., Kubota, T., and Inoue, A.: The effect of Cu on the plasticity of Fe-Si-B-P based bulk metallic glass. Scr. Mater. 60, 277 (2009).
24.Park, J.M., Kim, D.H., Kim, K.B., and Eckert, J.: Improving the plasticity of a high strength Fe-Si-Ti ultrafine composite by introduction of an immiscible element. Appl. Phys. Lett. 97, 251915 (2010).
25.Zhang, Z.F., He, G., Zhang, H., and Eckert, J.: Rotation mechanism of shear fracture induced by high plasticity in Ti-based nano-structured composite containing ductile dendrites. Scr. Mater. 52, 945 (2005).
26.Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., and Lewandowski, J.J.: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).
27.Spaepen, F.: Microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).
28.Leonhard, A., Xing, L.Q., Heilmaier, M., Gebert, A., Eckert, J., and Schultz, L.: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 805 (1998).
29.Park, J.M., Park, J.S., Kim, J.-H., and Chang, H.J.: Mechanical behaviors of partially devitrified Ti-based bulk metallic glasses. J. Mater. Sci. 40, 4999 (2005).
30.Kim, Y.C., Na, J.H., Park, J.M., Kim, D.H., Lee, J.K., and Kim, W.T.: Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses. Appl. Phys. Lett. 83, 3093 (2003).
31.Chen, M.W., Inoue, A., Zhang, W., and Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 (2006).
32.Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: Work-hardenable ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).
33.Hajlaoui, K., Yavari, A.R., Doisneau, B., LeMoulec, A., Botta, W.J., Vaughan, F.G., Greer, A.L., Inoue, A., Zhang, W., and Kvick, A.: Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis. Scr. Mater. 54, 1829 (2006).
34.Lee, M.L., Li, Y., and Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).
35.Park, J.M., Jayaraj, J., Kim, D.H., Mattern, N., Wang, G., and Eckert, J.: Tailoring of in situ Ti-based bulk glassy matrix composites with high mechanical performance. Intermetallics 18, 1908 (2010).


Related content

Powered by UNSILO

The influence of in situ formed precipitates on the plasticity of Fe–Nb–B–Cu bulk metallic glasses

  • Jin Man Park (a1), Do Hyang Kim (a2), Mihai Stoica (a3), Norbert Mattern (a3), Ran Li (a4) and Jürgen Eckert (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.