Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-13T06:27:10.661Z Has data issue: false hasContentIssue false

The influence of hydrogen on ion beam mixing of multilayer films

Published online by Cambridge University Press:  31 January 2011

P. B⊘rgesen
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, New York 14853
R. E. Wistrom
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, New York 14853
H. H. Johnson
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, New York 14853
D. A. Lilienfeld
Affiliation:
National Nanofabrication Facility, Cornell University, Ithaca, New York 14853
Get access

Abstract

Previous qualitative studies of ion beam mixing of Ni–Ti and Fe–Ti multilayers at room temperature have shown the Ni–Ti samples to mix considerably faster than the Fe–Ti, in apparent contrast with theory. Furthermore, the Fe–Ti mixing was strongly inhibited by previous charging of the sample with hydrogen, whereas only a small effect was seen for Ni–Ti. We have quantified the mixing and extended the study to four more systems (Al–Ti. Co–Ti, Cu–Ti, and Pd–Ti) and lower temperatures. This allows some important conclusions to be drawn. Predictions based on a thermal spike model underestimate the larger room temperature mixing rates (Cu–Ti, Ni–Ti, and Pd–Ti), apparently because of contributions from a temperature dependent mechanism such as radiation enhanced diffusion. The lower mixing rates (Fe–Ti, Co–Ti, and Ni–Ti at ∼80 K) are overestimated by a factor of 2–3.5, possibly because of hydrogen contamination of the as-deposited samples. For the Al–Ti sample, the experimental mixing rate was in good agreement with predictions. Except for the Cu–Ti sample, results were seen to vary with heat of solution, rather than heat of mixing, suggesting significant contributions from the lower temperature after-spike regime. Hydrogen charging was found to reduce the Fe–Ti mixing rate by a factor of 7 at room temperature, whereas the Co–Ti and Ni–Ti rates were only reduced by a factor of 2, and the mixing of the Pd–Ti was influenced very little. Near liquid nitrogen temperature the Ni–Ti mixing rate was more strongly reduced (by a factor of 3–4). Our results suggest that the original hydrogen contamination in as-deposited samples may also cause significant reduction of mixing rates in some materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Børgesen, P., Lilienfeld, D. A., and Johnson, H.H., J. Appl. Phys. (in press).Google Scholar
2Børgesen, P., Lilienfeld, D. A., Wistrom, R. E., and Johnson, H. H., Mater. Res. Soc. Symp. Proc, 128, 207 (1989).CrossRefGoogle Scholar
3Sigmund, P. and Gras-Marti, A., Nucl. Instrum. Methods 182/183, 25 (1981).CrossRefGoogle Scholar
4Cheng, Y. T., Rossum, M. Van, Nicolet, M-A., and Johnson, W. L., Appl. Phys. Lett. 45, 185 (1984).CrossRefGoogle Scholar
5d'Heurle, F., Baglin, J.E.E., and Clark, G. J., J. Appl. Phys. 57, 1426 (1985).CrossRefGoogle Scholar
6Rai, A.K., Bhattacharya, R. S., Rashid, M. H., and McCormick, A. W., Mater. Res. Soc. Symp. Proc. 54, 231 (1986).CrossRefGoogle Scholar
7Johnson, W. L., Cheng, Y. T., Rossum, M. Van, and Nicolet, M-A., Nucl. Instrum. Methods B7/8, 657 (1985).CrossRefGoogle Scholar
8Wiedersich, H., Mater. Res. Soc. Symp. Proc. 27, 13 (1984).CrossRefGoogle Scholar
9Averback, R. S., Nucl. Instrum. Methods B15, 675 (1986).CrossRefGoogle Scholar
10Peak, D. and Averback, R. S., Nucl. Instrum. Methods B7/8, 561 (1985).CrossRefGoogle Scholar
11Paine, B.M. and Averback, R. S., Nucl. Instrum. Methods B7/8, 666 (1985).CrossRefGoogle Scholar
12Workman, T. W., Cheng, Y. T., Johnson, W. L., and Nicolet, M-A., Appl. Phys. Lett. 50, 1485 (1987).CrossRefGoogle Scholar
13Hirvonen, J-P., Elve, M. A., Mayer, J. W., and Johnson, H. H., Mater. Sci. and Eng. 90, 13 (1987).CrossRefGoogle Scholar
14Btfttiger, J., Nielsen, S. K., Whitlow, H. J., and Wriedt, P., Nucl. Instrum. Methods 218, 684 (1983).CrossRefGoogle Scholar
15Hirvonen, J-P., Mayer, J. W., Nastasi, M., and Stone, D., Nucl. Instrum. Methods B23, 487 (1987).CrossRefGoogle Scholar
16Munn, P. and Wolf, G.K., Nucl. Instrum. Methods B7-8, 205 (1985).CrossRefGoogle Scholar
17Follstaedt, D.M., Knapp, J.A., Pope, L. E., Yost, F.G., and Picraux, S.T., Appl. Phys. Lett. 45, 529 (1984).CrossRefGoogle Scholar
18Singer, I.L. and Barlak, T. M., Appl. Phys. Lett. 43, 457 (1983).CrossRefGoogle Scholar
19Bhattacharya, R.S., Rai, A. K., Raffoul, C. N., Pronko, P.P., and Khobaib, M., J. Vac. Sci. & Technol. A3, 2680 (1985).CrossRefGoogle Scholar
20Dearnaley, G., Rad. Eff. 63, 25 (1982).CrossRefGoogle Scholar
21Granata, R. D., Crosta, M. A. De, Mclntyre, J. F., and Leidheiser, H. Jr , Ind. & Eng. Chem. Res. 26, 427 (1987).CrossRefGoogle Scholar
22Wei, W., Lankford, J., and Kossowsky, R., Mater. Sci. & Eng. 90, 307 (1987).CrossRefGoogle Scholar
23Wolf, G. K., Munn, P., and Ensinger, W., Proc. 5th Int. Conf. on Ion and Plasma Assisted Techn. (Munich, 1985), p. 69.Google Scholar
24L'Ecuyer, J., Brassard, C., Cardinal, C., and Terreault, B., Nucl. Instrum. Methods 149, 271 (1978).CrossRefGoogle Scholar
25Doyle, B.L. and Peercy, P. S., Appl. Phys. Lett. 34, 811 (1979).CrossRefGoogle Scholar
26Turos, A. and Meyer, O., Nucl. Instrum. Methods B4, 92 (1984).CrossRefGoogle Scholar
27Wistrom, R. E. (to be published).Google Scholar
28Sputtering by Particle Bombardment, edited by Behrisch, R. (Springer, Berlin, Heidelberg, New York, 1981), Vol. I.CrossRefGoogle Scholar
29Andersen, H.H., Appl. Phys. 18, 131 (1979).CrossRefGoogle Scholar
30Biersach, J. P. and Haggmark, L. G., Nucl. Instrum. Methods 174, 257 (1980).CrossRefGoogle Scholar
31Miedema, A. R., Phil. Tech. Rev. 36, 217 (1976).Google Scholar
32Arita, M., Kinaka, R., and Somino, M., Metall. Trans. A 10A, 529 (1979).CrossRefGoogle Scholar
33Kleppa, O. J. and Watanabe, S., Metall. Trans. B 13B, 391 (1982).CrossRefGoogle Scholar
34Doolittle, L.R., Nucl. Instrum. Methods B9, 344 (1985).CrossRefGoogle Scholar
35Bhattacharya, R.S. and Rai, A. K., J. Appl. Phys. 58, 248 (1985); see also Erratum, ibid., 2798.CrossRefGoogle Scholar
36Dienes, G. and Damask, A.C., J. Appl. Phys. 29, 1713 (1958).CrossRefGoogle Scholar
37Sizraann, R., J. Nucl. Mater. 69/70, 386 (1968).Google Scholar
38Besenbacher, F., Bøttiger, J., Nielsen, S. K., and Whitlow, H. J., Appl. Phys. A29, 141 (1982).CrossRefGoogle Scholar
39Guinan, M. W. and Kinney, J. H., J. Nucl. Mater. 103-104, 1319 (1981).CrossRefGoogle Scholar
40Myers, S.M., Wampler, W. R., Besenbacher, F., Robinson, S.L., and Moody, N. R., Mater. Sci. Eng. 69, 397 (1985).CrossRefGoogle Scholar
41Gase und Kohlenstoff in Metallen, edited by Fromm, E. and Gebhardt, E. (Springer, Berlin, Heidelberg, 1976).CrossRefGoogle Scholar
42Sigmund, P., Appl. Phys. Lett. 25, 169 (1974); ibid., 27, 52 (1975).CrossRefGoogle Scholar
43Rehn, L. E., in Metastable Materials Formation by Ion Implantation edited by Picraux, S.T. and Choyke, W. J. (North-Holland, Amsterdam 1982), p. 17.Google Scholar
44Myers, S.M., Nucl. Instrum. Methods 168, 265 (1980).CrossRefGoogle Scholar
45Schluckebier, M., Pfeiffer, Th., Muskalla, K., Schmulling, W., and Kamke, D., Appl. Phys. A42, 19 (1987).CrossRefGoogle Scholar
46Boer, F. R. De, Bloom, R., and Miedema, A. R., Physica 101B, 294 (1980).Google Scholar
47Boer, F. R. De, Bloom, R., and Miedema, A.R., Physica 113B, 18 (1982).Google Scholar
48Bloom, R., Boer, F. R. De, Niessen, A. K., and Miedema, A. R., Physica 115B, 285 (1983).Google Scholar
49Pettifor, D. G., Solid State Phys. 40, 43 (1987).CrossRefGoogle Scholar
50Hodges, C.H. and Stott, M.J., Philos. Mag. 26, 375 (1972).CrossRefGoogle Scholar
51Alonso, J.A. and Girifalco, L. A., J. Phys. F 8, 2455 (1978).CrossRefGoogle Scholar
52Alonso, J.A. and Girifalco, L. A., Phys. Rev. B19, 3889 (1979).CrossRefGoogle Scholar
53Williams, A. R., Gelatt, C. D., and Moruzzi, V. L., Phys. Rev. Lett. 44, 429 (1980).CrossRefGoogle Scholar
54Pettifor, D.G., Phys. Rev. Lett. 42, 846 (1979).CrossRefGoogle Scholar
55Watson, R. E. and Bennett, L. H., CALPHAD 5, 25 (1981).CrossRefGoogle Scholar
56Gachon, J. C. and Hertz, J., Computer Coupling of Phase Diagrams and Thermochemistry (CALPHAD) 7, 1 (1983).CrossRefGoogle Scholar
57Samokhval, V. V., Poleshchuk, P. A., and Vecher, A. A., Russian J. Phys. Chem. 45, 1174 (1971).Google Scholar
58Choudary, U. V., Gingerich, K. A., and Cornwell, L. R., Metall. Trans. A 8A, 1487 (1977).CrossRefGoogle Scholar
59Hirth, J.P., Metall. Trans. A A11, 861 (1980).CrossRefGoogle Scholar
60Eichenauer, W. and Pebler, A., Z. Metallkd. 48, 373 (1957).Google Scholar
61Caskey, G. R., Derrick, R. G., and Louthan, M. R., Scripta Metall. 8, 481 (1974).CrossRefGoogle Scholar
62Volkl, J. and Alefeld, G., in Diffusion in Solids, edited by Nowick, A. S. and Burton, J. J. (Academic Press, New York, 1975), Chap. 5.Google Scholar
63Livshits, A. I., Metter, I. M., and Samartsev, A. A., Sov. Phys. Tech. Phys. 21, 848 (1976).Google Scholar
64Furukawa, T. and Kato, E., Trans. ISIJ 16, 380 (1976).CrossRefGoogle Scholar
65Esin, Y. O., Bobrov, N. P., Petrushevskii, M. S., and Gel'd, P. V., Russian Met. 5, 86 (1974).Google Scholar
66German, R.M. and Pierre, G.R. St., Metall. Trans. 3, 2819 (1972).CrossRefGoogle Scholar