Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-12T19:15:15.401Z Has data issue: false hasContentIssue false

The influence of an electric field on the mechanism of combustion synthesis of tungsten silicides

Published online by Cambridge University Press:  03 March 2011

S. Gedevanishvili*
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis Davis, California 95616-5294
Z.A. Munir
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis Davis, California 95616-5294
*
a)Visiting scientist, Permanent address: F. Tavadze Institute of Metallurgy, Academy of Sciences of the Georgian Republic, Al. Kazbegy Avenue 15, 380060 Tibilisi, Republic of Georgia.
Get access

Abstract

The synthesis of tungsten silicides by self-propagating combustion has been successfully accomplished under the influence of an electric field. Materials with starting composition ranging from 6 to 30 wt. % Si were investigated by the method of field-activated combustion synthesis (FACS). A threshold field value was required to initiate a self-sustaining wave; the threshold value depended on composition. It was shown that the level of the applied field can influence the mechanism of silicide formation. The silicide W5Si3 could be formed only at relatively high field values while WSi2 can be formed at any field. The effect of the field on the silicide formation is discussed in terms of its role in liquid phase formation.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tsai, M. Y., d'Heurle, F.M., Peterson, C. S., and Johnson, R. W., J. Appl. Phys. 52, 5350 (1981).CrossRefGoogle Scholar
2Nava, F., Weiss, B. Z., Ahn, K. Y., Smith, D. A., and Tu, K. N., J. Appl. Phys. 64, 354 (1988).CrossRefGoogle Scholar
3Tjong, S. C. and Hsieh, I. C., Mater. Res. Bull. 22, 841 (1987).Google Scholar
4Hammar, M., Zhang, S. L., Buchta, R., and Johanson, T., Thin Solid Films 185, 9 (1990).Google Scholar
5Willer, J., Heinzle, M., Arnold, N., and Ristow, D., Solid-State Electron. 33, 571 (1990).CrossRefGoogle Scholar
6Fitzer, E., Monatsh. Montan. Hochsch. Leoben 97, 81 (1952).Google Scholar
7Defaczq, E., Compt. Rend. 144, 848 (1907).Google Scholar
8Wedekind, E., German Patent, 294, 267 (1913).Google Scholar
9Singh, A., Vyas, P. D., Khokle, W. S., Singh, C., and Lai, K., IEEE Trans. Electron Devices 40, 1551 (1993).CrossRefGoogle Scholar
10Luby, S., Majkova, E., D'Anna, E., Luches, A., Martino, M., Tufano, A., and Majni, G., Appl. Surf. Sci. 69, 345 (1993).Google Scholar
11Bokhonov, B., Ivanov, E., and Boldyrev, V., J. Alloys Comp. 199, 25 (1993).CrossRefGoogle Scholar
12Amiotti, M., Bellandi, E., Borghesi, A., Piaggi, A., Guizzetti, G., Nava, F., and Queirolo, G., Appl. Phys. A54, 181 (1992).Google Scholar
13Zhu, D. H., Lu, H. B., Tao, K., and Liu, B. X., J. Phys. Condensed Matter 5, 5505 (1993).Google Scholar
14Munir, Z. A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3, 277 (1989).CrossRefGoogle Scholar
15Munir, Z. A., Am. Ceram. Soc. Bull. 67, 342 (1988).Google Scholar
16Munir, Z. A., Lai, W., and Ewald, K., U.S. Patent No. 5 380409, January 10, 1995.Google Scholar
17Feng, A. and Munir, Z. A., J. Appl. Phys. 76, 1927 (1994).Google Scholar
18Feng, A. and Munir, Z. A., Metall. Mater. Trans (1995, in press).Google Scholar
19Feng, A. and Munir, Z. A., Metall. Mater. Trans. (1995, in press).Google Scholar
20Gedevanishvili, S. and Munir, Z. A., Scripta Met. et Mater. 31, 741 (1994).CrossRefGoogle Scholar
21Shon, I. J. and Munir, Z. A., Mater. Sci. Eng. (1995, in press).Google Scholar
22Xue, H. and Munir, Z. A., Metall. Mater. Trans. (1995, in press).Google Scholar