Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-07T23:25:05.892Z Has data issue: false hasContentIssue false

Influence of additional elements on the development of nanoscale heterogeneities in (TiCu)-based bulk metallic glasses with enhanced ductility

Published online by Cambridge University Press:  31 January 2011

X.F. Zhang
Affiliation:
Department of Materials Science and Metallurgy, Kyungpook National University, Buk-gu, Daegu 702-701, Korea
K.B. Kim
Affiliation:
Department of Advanced Materials Engineering, Sejong University, Gwangjin-gu, Seoul 143-747, Korea
J. Das
Affiliation:
IFW Dresden, Institute for Complex Materials, D-01069 Dresden, Germany
S. Yi*
Affiliation:
Department of Materials Science and Metallurgy, Kyungpook National University, Buk-gu, Daegu 702-701, Korea
J. Eckert
Affiliation:
IFW Dresden, Institute for Complex Materials, D-01069 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: yish@knu.ac.kr
Get access

Abstract

The effect of additional elements on microstructure and mechanical properties of (TiCu)-based bulk metallic glasses (BMGs) has been systematically investigated. Based on the values of the heat of mixing between the additional elements and the major constituent elements Ti and Cu, small additions of elements having a positive heat of mixing with Cu and a negative heat of mixing with Ti are effective in forming nanoscale heterogeneities upon solidification and enhance the ductility. It is experimentally demonstrated that the selection of the minor elements in (TiCu)-based BMGs plays a crucial role to induce nanoscale heterogeneities and thus to control the deformation behavior of the bulk metallic glasses.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 1999CrossRefGoogle Scholar
2Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000CrossRefGoogle Scholar
3Spaepen, F.: Microscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 1977CrossRefGoogle Scholar
4Greer, A.L.: Metallic glasses. Science 267, 1947 1995CrossRefGoogle ScholarPubMed
5Hays, C.C., Kim, C.P.Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 2000CrossRefGoogle ScholarPubMed
6Kühn, U., Eckert, J., Mattern, N.Schultz, L.: ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Appl. Phys. Lett. 80, 2478 2002CrossRefGoogle Scholar
7Fan, C., Ott, R.T.Hufnagel, T.C.: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 2002Google Scholar
8Xing, L.Q., Li, Y., Ramesh, K.T., Li, J.Hufnagel, T.C.: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B 64, 180201 2001Google Scholar
9Schroers, J.Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 2004CrossRefGoogle ScholarPubMed
10Inoue, A., Zhang, W., Zhang, T.Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 2645 2001Google Scholar
11Jia, P., Guo, H., Li, Y., Xu, J.Ma, E.: A new Cu–Hf–Al ternary bulk metallic glass with high glass forming ability and ductility. Scripta Mater. 54, 2165 2006CrossRefGoogle Scholar
12Yao, K.F., Ruan, F., Yang, Y.Q.Chen, N.: Superductile bulk metallic glass. Appl. Phys. Lett. 88, 122106 2006CrossRefGoogle Scholar
13Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H.Eckert, J.: Work-hardenable ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 2005CrossRefGoogle ScholarPubMed
14Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R.Greer, A.L.: Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper–zirconium glass. Philos. Mag. Lett. 85, 221 2005CrossRefGoogle Scholar
15Yu, P., Bai, H.Y., Tang, M.B.Wang, W.L.: Excellent glass-forming ability in simple Cu50Zr50-based alloys. J. Non-Cryst. Solids 351, 1328 2005CrossRefGoogle Scholar
16Kim, K.B., Das, J., Baier, F., Tang, M.B., Wang, W.H.Eckert, J.: Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Appl. Phys. Lett. 88, 051911 2006CrossRefGoogle Scholar
17Das, J., Kim, K.B., Xu, W., Wei, B.C., Zhang, Z.F., Wang, W.H., Yi, S.Eckert, J.: Ductile metallic glasses in supercooled martensitic alloys. Mater. Trans. 37, 2606 2006Google Scholar
18Kim, K.B., Das, J., Wang, X.D., Zhang, Z.F., Eckert, J.Yi, S.: Effect of Sn on microstructure and mechanical properties of (Ti–Cu)-based bulk metallic glasses. Philos. Mag. Lett. 86, 479 2006CrossRefGoogle Scholar
19Zhang, Z.F., Wang, X.D., Kim, K.B.Yi, S.: Be effect on glass-forming ability and mechanical properties of Ti–Cu–Co–Zr–Sn bulk metallic glasses. Mater. Trans. 47, 2321 2006Google Scholar
20Wang, W.H.: Roles of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci. 52, 540 2007Google Scholar
21Takeuchi, A.Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 2005CrossRefGoogle Scholar
22Kim, K.B., Das, J., Venkataraman, S., Yi, S.Eckert, J.: Work hardening ability of ductile Ti45Cu40Ni7.5Zr5Sn2.5 and Cu47.5Zr47.5Al5 bulk metallic glasses. Appl. Phys. Lett. 89, 071908 2006CrossRefGoogle Scholar
23Williams, D.B.Carter, C.B.: Transmission electron microscopy. Imaging III, 357 1996Google Scholar
24Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M.Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 2006CrossRefGoogle ScholarPubMed
25Yavari, A.R.: A new order for metallic glasses. Nature 439, 405 2006CrossRefGoogle ScholarPubMed
26Kim, K.B., Das, J., Eckert, J., Yi, S., Fleury, E., Wang, W.H.Zhang, Z.F.: (unpublished)Google Scholar
27Kündig, A.A., Ohnuma, M., Ping, D.H., Ohkubo, T.Hono, K.: In situ formed two-phase metallic glass with surface fractal microstructure. Acta Mater. 52, 2441 2004Google Scholar
28Park, B.J., Chang, H.J., Kim, D.H., Kim, W.T., Chattopadhyay, K., Abinandanan, T.A.Bhattacharyya, S.: Phase separating bulk metallic glass: A hierarchical composite. Phys. Rev. Lett. 96, 245503 2006Google Scholar
29Park, B.J., Chang, H.J., Kim, D.H.Kim, W.T.: In situ formation of two amorphous phases by liquid phase separation in Y–Ti–Al–Co alloy. Appl. Phys. Lett. 85, 6353 2004CrossRefGoogle Scholar
30Mattern, N., Kühn, U., Gebert, A., Gemming, T., Zinkevich, M., Wendrock, H.Schultz, L.: Microstructure and thermal behavior of two-phase amorphous Ni–Nb–Y alloy. Scripta Mater. 53, 271 2005CrossRefGoogle Scholar
31Concustell, A., Mattern, N., Wendrock, H., Kühn, U., Gebert, A., Eckert, J., Greer, A.L., Sort, J.Baró, M.D.: Mechanical properties of a two-phase amorphous Ni–Nb–Y alloy studied by nanoindentation. Scripta Mater. 56, 85 2007Google Scholar
32Meijering, J.L.: Segregation in regular ternary solutions 1. Philips Res. Rep. 5, 333 1950Google Scholar
33Meijering, J.L.: Segregation in regular ternary solutions 2. Philips Res. Rep. 6, 183 1951Google Scholar
34Abe, T., Shimono, M., Hashimoto, K., Hono, K.Onodera, H.: Phase separation and glass forming abilities of ternary alloys. Scripta Mater. 55, 421 2006CrossRefGoogle Scholar