Skip to main content Accessibility help

Indentation-derived elastic modulus of multilayer thin films: Effect of unloading-induced plasticity

  • Ryan D. Jamison (a1) and Yu-Lin Shen (a2)


Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. The indentation-derived modulus of a monolayer material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. It is found that several cycles are required to minimize unloading-induced plasticity.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Cahn, R.W.: The Coming of Materials Science, 5th ed. (Pergamon Press, Oxford, England, 2001).
2. Laraia, V.J. and Heuer, A.H.: Novel composite microstructure and mechanical-behavior of mollusk shell. J. Am. Ceram. Soc. 72(11), 2177 (1989).
3. Ko, S.W., Dechakupt, T., Randall, C.A., Trolier-McKinstry, S., Randall, M., and Tajuddin, A.: Chemical solution deposition of copper thin films and integration into a multilayer capacitor structure. J. Electroceram. 24(3), 161 (2010).
4. Koseki, T., Inoue, J., and Nambu, S.: Development of multilayer steels for improved combinations of high strength and high ductility. Mater. Trans. 55(2), 227 (2014).
5. Sahin, Y.: The effects of various multilayer ceramic coatings on the wear of carbide cutting tools when machining metal matrix composites. Surf. Coat. Technol. 199(1), 112 (2005).
6. Ghalandari, L. and Moshksar, M.M.: High-strength and high-conductive Cu/Ag multilayer produced by ARB. J. Alloys Compd. 506(1), 172 (2010).
7. Voevodin, A.A., Schneider, J.M., Rebholz, C., and Matthews, A.: Multilayer composite ceramic-metal-DLC coatings for sliding wear applications. Tribol. Int. 29(7), 559 (1996).
8. Schmitt, M.P., Rai, A.K., Bhattacharya, R., Zhu, D.M., and Wolfe, D.E.: Multilayer thermal barrier coating (TBC) architectures utilizing rare earth doped YSZ and rare earth pyrochlores. Surf. Coat. Technol. 251, 56 (2014).
9. Windt, D.L. and Bellotti, J.A.: Performance, structure, and stability of SiC/Al multilayer films for extreme ultraviolet applications. Appl. Opt. 48(26), 4932 (2009).
10. Ziani, A., Delmotte, F., Le Paven-Thivet, C., Meltchakov, E., Jerome, A., Roulliay, M., Bridou, F., and Gasc, K.: Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging. Thin Solid Films 552, 62 (2014).
11. Lotfian, S., Rodriguez, M., Yazzie, K.E., Chawla, N., Llorca, J., and Molina-Aldareguia, J.M.: High temperature micropillar compression of Al/SiC nanolaminates. Acta Mater. 61, 4439 (2013).
12. Knorr, I., Cordero, N.M., Lilleodden, E.T., and Volkert, C.A.: Mechanical behavior of nanoscale Cu/PdSi multilayers. Acta Mater. 61, 4984 (2013).
13. Bhattacharyya, D., Mara, N.A., Dickerson, P., Hoagland, R.G., and Misra, A.: Compressive flow behavior of Al–TiN multilayers at nanometer scale layer thickness. Acta Mater. 59(10), 3804 (2011).
14. Deng, X., Cleveland, C., Chawla, N., Karcher, T., Koopman, M., and Chawla, K.K.: Nanoindentation behavior of nanolayered metal ceramic composites. J. Mater. Eng. Perform. 14(4), 417 (2005).
15. Romero, J., Lousa, A., Martinez, E., and Esteve, J.: Nanometric chromium/chromium carbide multilayers for tribological applications. Surf. Coat. Technol. 163, 392 (2003).
16. Phillips, M.A., Clemens, B.M., and Nix, W.D.: Microstructure and nanoindentation hardness of Al/Al3Sc multilayers. Acta Mater. 51(11), 3171 (2003).
17. Wang, Y-C., Misra, A., and Hoagland, R.G.: Fatigue properties of nanoscale Cu/Nb multilayers. Scr. Mater. 54, 1593 (2006).
18. Budiman, A.S., Han, S-M., Li, N., Wei, Q-M., Dickerson, P., Tamura, N., Kunz, M., and Misra, A.: Plasticity in the nanoscale Cu/Nb single-crystal multilayers as revealed by synchrotron Laue x-ray microdiffraction. J. Mater. Res. 27(3), 599 (2012).
19. Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
20. Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).
21. Galanov, B.A., Grigor'ev, O.N., Mil'man, Y.V., and Ragozin, I.P.: Determination of the hardness and Young's modulus from the depth of penetration of a pyramidal indentor. Strength Mater. 15(11), 1624 (1983).
22. Doerner, M.F. and Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).
23. Pharr, G.M. and Bolshakov, A.: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).
24. Bolshakov, A., Oliver, W.C., and Pharr, G.M.: An explanation for the shape of nanoindentation unloading curves based on finite element simulation. MRS Proc. 356, 675 (1994).
25. Hay, J.C., Bolshakov, A., and Pharr, G.M.: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296 (1999).
26. Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).
27. Tang, G., Shen, Y-L., Singh, D.R.P., and Chawla, N.: Indentation behavior of metal-ceramic multillayers at the nanoscale: Numerical analysis and experimental verification. Acta Mater. 58, 2033 (2010).
28. Wen, F.-L. and Shen, Y-L.: Plastic deformation in multilayered thin films during indentation unloading: A modeling analysis incorporating viscoplastic response. Mech. Time-Depend. Mater. 15, 277 (2011).
29. Shen, Y-L., Blada, C.B., Williams, J.J., and Chawla, N.: Cyclic indentation behavior of metal–ceramic nanolayered composites. Mater. Sci. Eng., A 557, 119 (2012).
30. Chawla, N., Singh, D.R.P., Shen, Y-L., Tang, G., and Chawla, K.K.: Indentation mechanics and fracture behavior of metal/ceramic nanolaminate composites. J. Mater. Sci. 43(13), 4383 (2008).
31. Fischer-Cripps, A.C.: Nanoindentation, 1st ed. (Springer, New York, USA, 2002).
32. Lide, D.R.: Handbook of Chemistry and Physics, 76th ed. (CRC, Flordia, USA, 1995).
33. Bucaille, J.L., Stauss, S., Schwaller, P., and Michler, J.: A new technique to determine the elastoplastic properties of thin metallic films using sharp indenters. Thin Solid Films 447, 239 (2004).
34. Deng, X., Chawla, N., Chawla, K.K., Koopman, M., and Chu, J.P.: Mechanical behavior of multilayered nanoscale metal-ceramic composites. Adv. Eng. Mater. 7(12), 1099 (2005).
35. Sun, P.L., Chu, J.P., Lin, T.Y., Shen, Y-L., and Chawla, N.: Characterization of nanoindentation damage in metal/ceramic multilayered films by transmission electron microscopy (TEM). Mater. Sci. Eng., A 257, 2985 (2010).
36. Tang, G., Shen, Y-L., Singh, D.R.P., and Chawla, N.: Analysis of indentation-derived effective elastic modulus of metal-ceramic multilayers. Int. J. Mech. Mater. Des. 4, 391 (2008).
37. Shen, Y-L.: Constrained Deformation of Materials (Springer, New York, USA, 2010).
38. Singh, D.R.P., Chawla, N., and Shen, Y-L.: Focused ion beam (FIB) tomography of nanoindentation damage in nanoscale metal/ceramic multilayers. Mater. Charact. 61(4), 481 (2010).
39. Jamison, R.D. and Shen, Y-L.: Indentation and overall compression behavior of multilayered thin-film composites: Effect of undulating layer geometry. J. Compos. Mater. doi: 10.1177/0021998315576768, Published online 19 March 2015.
40. Oliver, W.C. and Pharr, G.M.: Nanoindentation in materials research: Past, present, and future. MRS Bull. 35(11), 897 (2010).
41. Suresh, S.: Fatigue of Materials, 2nd ed. (Cambridge University Press, Cambridge, England, 1998).
42. Feng, G., Budiman, A.S., Nix, W.D., Tamura, N., and Patel, J.R.: Indentation size effects in single crystal copper as revealed by synchrotron x-ray microdiffraction. J. Appl. Phys. 104, 043501 (2008).
43. Budiman, A.S., Narayanan, K.R., Berla, L.A., Li, N., Dickerson, P., Wang, J., Tamura, N., Kunz, M., Nix, W.D., and Misra, A.: Plasticity evolution in nanoscale Cu/Nb single crystal multilayers as revealed by synchrotron X-ray microdiffraction. Mater. Sci. Eng., A 635, 6 (2015).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed