Skip to main content Accessibility help
×
Home

Indentation size effect in aqueous electrophoretic deposition zirconia dental ceramic

  • Lei Wang (a1), Isaac Asempah (a2), Xu Li (a2), Sheng-Qi Zang (a3), Yan-Fei Zhou (a2), Jie Ding (a2) and Lei Jin (a3)...

Abstract

Highly dense zirconia dental ceramic coatings were fabricated by aqueous electrophoretic deposition (EPD) and subsequently sintered between 1250 and 1450 °C. Microstructural examination revealed that aqueous EPDZrO2 coatings possessed a tetragonal phase structure and the grain size increased with increasing sintering temperature. Nanoindentation study proved that the aqueous EPDZrO2 coating also had excellent mechanical properties. The effect of different applied loads on hardness and elastic modulus of the 1350 °C-sintered sample at room temperature was investigated by the method of progressive multicycle measurement nanoindentation. The simulative experiment proved that hardness of aqueous EPDZrO2 exhibited reverse indentation size effect (ISE) behavior and then displayed the normal ISE response. The analysis indicates that the reverse ISE is attributed to the relaxation of surface stresses resulting from indentation cracks at small loads and normal ISE is caused by geometrically necessary dislocations. The tetragonal–monoclinic stress-induced phase transformation during nanoindentation is the primary cause of dental zirconia failures.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: ray521252@163.com
b)e-mail: ljin@nju.edu.cn

References

Hide All
1.Zhu, Y., Zhu, R., Ma, J., Weng, Z., Wang, Y., Shi, X., Li, Y., Yan, X., Dong, Z., Xu, J., Tang, C., and Jin, L.: In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering. Biomed. Mater. 10, 055009 (2015).
2.Tartaglia, G.M., Sidoti, E., and Sforza, C.: Seven-year prospective clinical study on zirconia-based single crowns and fixed dental prostheses. Clin. Oral Invest. 19, 1137 (2015).
3.Sonza, Q.N., Della Bona, A., and Borba, M.: Effect of the infrastructure material on the failure behavior of prosthetic crowns. Dent. Mater. 30, 578 (2014).
4.Kwon, M-S., Oh, S-Y., and Cho, S-A.: Two-body wear comparison of zirconia crown, gold crown, and enamel against zirconia. J. Mech. Behav. Biomed. Mater. 47, 21 (2015).
5.Alao, A.R. and Yin, L.: Nano-scale mechanical properties and behavior of pre-sintered zirconia. J. Mech. Behav. Biomed. Mater. 36, 21 (2014).
6.Ferrari, M., Vichi, A., and Zarone, F.: Zirconia abutments and restorations: From laboratory to clinical investigations. Dent. Mater. 31, e63 (2015).
7.Ozcan, M. and Bernasconi, M.: Adhesion to zirconia used for dental restorations: A systematic review and meta-analysis. J. Adhes. Dent. 17, 7 (2015).
8.Silva, N.R.F.A., Sailer, I., Zhang, Y., Coelho, P.G., Guess, P.C., Zembic, A., and Kohal, R.J.: Performance of zirconia for dental healthcare. Materials 3, 863 (2010).
9.Wittneben, J.G., Wright, R.F., Weber, H.P., and Gallucci, G.O.: A systematic review of the clinical performance of CAD/CAM single-tooth restorations. Int. J. Prosthod. 22, 466 (2009).
10.Patzelt, S.B., Spies, B.C., and Kohal, R.J.: CAD/CAM-fabricated implant-supported restorations: A systematic review. Clin. Oral Implants Res. 26(Suppl. 11), 77 (2015).
11.Denry, I. and Kelly, J.R.: State of the art of zirconia for dental applications. Dent. Mater. 24, 299 (2008).
12.Manicone, P.F., Rossi Iommetti, P., and Raffaelli, L.: An overview of zirconia ceramics: Basic properties and clinical applications. J. Dent. 35, 819 (2007).
13.Nakamura, T., Nishida, H., Sekino, T., Nawa, M., Wakabayashi, K., Kinuta, S., Mutobe, Y., and Yatani, H.: Electrophoretic deposition zirconia/alumina of ceria-stabilized zironia/alumina powder. Dent. Mater. J. 26, 623 (2007).
14.Raju, K. and Yoon, D.H.: Electrophoretic deposition of BaTiO3 in an aqueous suspension using asymmetric alternating current. Mater. Lett. 110, 188 (2013).
15.Yoon, D.H., Muksin, , and Raju, K.: Alternating current electrophoretic deposition (AC-EPD) of SiC nanoparticles in an aqueous suspension for the fabrication of SiCf/SiC composites. Dig. J. Nanomater. Bios. 10, 1103 (2015).
16.Chávez-Valdez, A. and Boccaccini, A.R.: Innovations in electrophoretic deposition: Alternating current and pulsed direct current methods. Electrochim. Acta 65, 70 (2012).
17.Besra, L. and Liu, M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 1 (2007).
18.Raju, K., Yu, H-W., and Yoon, D-H.: Aqueous electrophoretic deposition of SiC using asymmetric AC electric fields. Ceram. Int. 40, 12609 (2014).
19.Chavez-Valdez, A., Herrmann, M., and Boccaccini, A.R.: Alternating current electrophoretic deposition (EPD) of TiO2 nanoparticles in aqueous suspensions. J. Colloid Interface Sci. 375, 102 (2012).
20.Ammam, M.: Electrophoretic deposition under modulated electric fields: A review. RSC Adv. 2, 7633 (2012).
21.Majic Renjo, M., Curkovic, L., Stefancic, S., and Coric, D.: Indentation size effect of Y-TZP dental ceramics. Dent. Mater. 30, e371 (2014).
22.Mahoney, E.K., Rohanizadeh, R., Ismail, F.S., Kilpatrick, N.M., and Swain, M.V.: Mechanical properties and microstructure of hypomineralised enamel of permanent teeth. Biomaterials 25, 5091 (2004).
23.Mahoney, E., Holt, A., Swain, M., and Kilpatrick, N.: The hardness and modulus of elasticity of primary molar teeth:an ultra-micro-indentation study. J. Dent. 28, 589 (2000).
24.Angker, L. and Swain, M.V.: Nanoindentation: Application to dental hard tissue investigations. J. Mater. Res. 21, 1893 (2011).
25.Apratim, A., Eachempati, P., Krishnappa Salian, K.K., Singh, V., Chhabra, S., and Shah, S.: Zirconia in dental implantology: A review. J. Int. Soc. Prev. Community Dent. 5, 147 (2015).
26.Stemmer, S., Vleugels, J., and Van Der Biest, O.: Grain boundary segregation in high-purity, yttria-stabilized tetragonal zirconia polycrystals (Y-TZP). J. Eur. Ceram. Soc. 18, 1565 (1998).
27.Mecartney, M.L.: Influence of an amorphous second phase on the properties of yttria-stabilized tetragonal zirconia polycrystals (Y-TZP). J. Am. Ceram. Soc. 70, 54 (1987).
28.Besra, L., Uchikoshi, T., Suzuki, T.S., and Sakka, Y.: Bubble-free aqueous electrophoretic deposition (EPD) by pulse-potential application. J. Am. Ceram. Soc. 91, 3154 (2008).
29.Alao, A.R. and Yin, L.: Loading rate effect on the mechanical behavior of zirconia in nanoindentation. Mater. Sci. Eng., A 619, 247 (2014).
30.Shao, L., Jiang, D., and Gong, J.: Nanoindentation characterization of the hardness of zirconia dental ceramics. Adv. Eng. Mater. 15, 704 (2013).
31.Guazzato, M., Albakry, M., Ringer, S.P., and Swain, M.V.: Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent. Mater. 20, 449 (2004).
32.Cao, Z.H., Lu, H.M., Meng, X.K., and Ngan, A.H.W.: Indentation size dependent plastic deformation of nanocrystalline and ultrafine grain Cu films at nanoscale. J. Appl. Phys. 105, 083521 (2009).
33.Xiao, G., Yuan, G., Jia, C., Yang, X., Li, Z., and Shu, X.: Strain rate sensitivity of Sn–3.0Ag–0.5Cu solder investigated by nanoindentation. Mater. Sci. Eng., A 613, 336 (2014).
34.Ebisu, T. and Horibe, S.: Analysis of the indentation size effect in brittle materials from nanoindentation load–displacement curve. J. Eur. Ceram. Soc. 30, 2419 (2010).
35.Luo, J.M., Dai, C.Y., Shen, Y.G., and Mao, W.G.: Elasto-plastic characteristics and mechanical properties of as-sprayed 8 mol% yttria-stabilized zirconia coating under nano-scales measured by nanoindentation. Appl. Surf. Sci. 309, 271 (2014).
36.Zhu, T., Bushby, A., and Dunstan, D.: Size effect in the initiation of plasticity for ceramics in nanoindentation. J. Mech. Phys. Solids 56, 1170 (2008).
37.Ren, X.J., Hooper, R.M., Griffiths, C., and Henshall, J.L.: Indentation size effect in ceramics: Correlation with H/E. J. Mater. Sci. Lett. 22, 1105 (2003).
38.Page, T.F., Oliver, W.C., and McHargue, C.J.: The deformation behavior of ceramic crystals subjected to very low load (nano)indentations. J. Mater. Res. 7, 450 (2011).
39.Li, H. and Bradt, R.C.: The effect of indentation-induced cracking on the apparent microhardness. J. Mater. Sci. 31, 1065 (1996).
40.Sangwal, K.: Review: Indentation size effect, indentation cracks and microhardness measurement of brittle crystalline solids-some basic concepts and trends. Cryst. Res. Technol. 44, 1019 (2009).
41.Sangwal, K. and Surowska, B.: Study of indentation size effect and microhardness of SrLaAlO4 and SrLaGaO4 single crystals. Mater. Res. Innovations 7, 91 (2016).
42.Sangwal, K. and Kłos, A.: Study of microindentation hardness of different planes of gadolinium calcium oxyborate single crystals. Cryst. Res. Technol. 40, 429 (2005).
43.Sebastian, S. and Khadar, M.A.: Microhardness indentation size effect studies in 60B2O3-(40-x)PbO-xMCl2 and 50B2O3(50-x)PbO-xMCl2 (M = Pb, Cd) glasses. J. Mater. Sci. 40, 1655 (2005).
44.Bull, S.J.: On the origins and mechanisms of the indentation size effect. Z. Metallkd. 94, 787 (2003).
45.Sangwal, K.: On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys. 63, 145 (2000).
46.Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W.: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42, 475 (1994).
47.Elmustafa, A.A., Eastman, J.A., Rittner, M.N., Weertman, J.R., and Stone, D.S.: Indentation size effect: Large grained aluminum versus nanocrystalline aluminum-zirconium alloys. Scr. Mater. 43, 951 (2000).
48.Liu, E.Q., Wang, H.F., Xiao, G.S., Yuan, G.Z., and Shu, X.F.: Creep-related micromechanical behavior of zirconia-based ceramics investigated by nanoindentation. Ceram. Int. 41, 12939 (2015).
49.Jin, L.: Property study of nano-zirconia formed by aqueous electrophoretic deposition. In General Session & Exhibition of the IADR/AADR/CADR No.89 (Sage Publications, San Diego, 2011).
50.Johnson, K.L.: Contact Mechanics (Cambridge University Press, 1996).
51.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2011).
52.Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).
53.Pharr, G.M., Oliver, W.C., and Brotzen, F.R.: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7, 613 (2011).
54.Li, X. and Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11 (2002).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed