Skip to main content Accessibility help

The indentation hardness of silicon measured by instrumented indentation: What does it mean?

  • Bianca Haberl (a1), Leonardus Bimo Bayu Aji (a1), J.S. Williams (a1) and Jodie E. Bradby (a1)


The indentation hardness of three different pure forms of silicon was investigated by two different methods. The hardness was probed by direct imaging of the residual impressions and by instrumented indentation using the Oliver–Pharr method. The forms of silicon used were a defective form of amorphous silicon, an amorphous form close to a continuous random network, and a crystalline silicon. The first form deforms via plastic flow and the latter two via phase transition. Two different unloading rates, fast and slow, were used to vary the phase transition behavior. This influenced the relative hardness as measured by instrumented indentation, which is not a reliable method to quantify hardness values in phase transforming materials. Thus, for our phase transforming silicon system, the relative hardness between samples can only be determined correctly by direct imaging, provided that the image accurately reveals the extent of the phase transformed volume.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Gridneva, V., Milman, Y.V., and Trefilov, V.I.: Phase transition in diamond-structure crystals during hardness measurements. Phys. Status Solidi A 14, 77 (1972).
2.Gerk, P. and Tabor, D.: Indentation hardness and semiconductor-metal transition of germanium and silicon. Nature 271, 732 (1978).
3.Mujica, A., Rubio, A., Muñoz, A., and Needs, R.J.: High-pressure phases of group-IV, III-V, and II-VI compounds. Rev. Mod. Phys. 75, 863 (2003).
4.Ackland, G.J.: High-pressure phases of group IV and III-V semiconductors. Rep. Prog. Phys. 64, 483 (2001).
5.Pharr, G.M., Oliver, W.C., and Harding, D.S.: New evidence for a pressure-induced phase transformation during the indentation of silicon. J. Mater. Res. 6, 1129 (1991).
6.Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V., and Munroe, P.: Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon. Appl. Phys. Lett. 77, 3749 (2000).
7.Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V., and Munroe, P.: Mechanical deformation in silicon by micro-indentation. J. Mater. Res. 16, 1500 (2001).
8.Pharr, G.M., Oliver, W.C., Cook, R.F., Kirchner, P.D., Kroll, M.C., Dinger, T.R., and Clarke, D.R.: Electrical resistance of metallic contacts on silicon and germanium during indentation. J. Mater. Res. 7, 961 (1992).
9.Vandeperre, L.J., Guiliani, F., Lloyd, S.J., and Clegg, W.J.: The hardness of silicon and germanium. Acta Mater. 55, 6307 (2007).
10.Kailer, A., Nickel, K.G., and Gogotsi, Y.G.: Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations. J. Raman Spectrosc. 30, 939 (1999).
11.Domnich, V. and Gogotsi, Y.: Phase transformations in silicon under contact loading. Rev. Adv. Mater. Sci. 3, 1 (2002).
12.Field, J.S. and Swain, M.V.: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).
13.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
14.Williamson, D.L., Roorda, S., Chicoine, M., Tabti, R., Stolk, P.A., Acco, S., and Saris, F.W.: On the nanostructure of pure amorphous silicon. Appl. Phys. Lett. 67, 226 (1995).
15.Haberl, B., Bradby, J.E., Swain, M.V., Williams, J.S., and Munroe, P.: Phase transformations induced in relaxed amorphous silicon by indentation at room temperature. Appl. Phys. Lett. 85, 5559 (2004).
16.Haberl, B., Bradby, J.E., Ruffell, S., Williams, J.S., and Munroe, P.: Phase transformations induced by spherical indentation in ion-implanted amorphous silicon. J. Appl. Phys. 100, 013520 (2006).
17.Williams, J.S., Field, J.S., and Swain, M.V.: Mechanical Property Characterisation of Crystalline, Ion Implantation Amorphised and Annealed Relaxed Silicon with Spherical Indenters, in Symposium M1 - Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P.H., Weihs, T.P., and Sanchez, P.B.J.E. Jr. (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1990) p. 571.
18.Williams, J.S., Chen, Y., Wong-Leung, J., Kerr, A., and Swain, M.V.: Ultra-micro-indentation of silicon and compound semiconductors with spherical indenters. J. Mater. Res. 14, 2338 (1999).
19.Follstaedt, D.M., Knapp, J.A., and Myers, S.M.: Mechanical properties of ion-implanted amorphous silicon. J. Mater. Res. 14, 338 (2004).
20.Nagy, P.M., Aranyi, D., Horváth, P., Petö, G., and Kálmán, E.: Nanomechanical properties of ion-implanted Si. Surf. Interface Anal. 40, 875 (2008).
21.Roorda, S., Sinke, W.C., Potae, J.M., Jacobson, D.C., Dierker, S., Dennis, B.S., Eaglesham, D.J., Spaepen, F., and Fuoss, P.: Structural relaxation and defect annihilation in pure amorphous silicon. Phys. Rev. B 44, 3702 (1991).
22.Laaziri, K., Kycia, S., Roorda, S., Chicoine, M., Robertson, J.L., Wang, J., and Moss, S.C.: High-energy x-ray diffraction study of pure amorphous silicon. Phys. Rev. B 60, 13520 (1999).
23.Urli, X., Dias, C.L., Lewis, L.J., and Roorda, S.: Point defects in pure amorphous silicon and their role in structural relaxation: A tight-binding molecular-dynamics study. Phys. Rev. B 77, 155204 (2008).
24.Haberl, B., Liu, A.C.Y., Bradby, J.E., Ruffell, S., Williams, J.S., and Munroe, P.: Structural characterization of pressure-induced amorphous silicon. Phys. Rev. B 79, 155209 (2009).
25.Fujisawa, N. and Swain, M.V.: On the indentation contact area of a creeping solid during constant-strain-rate loading by a sharp indenter. J. Mater. Res. 22, 893 (2007).
26.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentations: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).
27.Tsui, T.Y. and Pharr, G.M.: Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates. J. Mater. Res. 14, 292 (1999).
28.Bradby, J.E., Williams, J.S., and Swain, M.V.: In situ electrical characterization of phase transformations in Si during indentation. Phys. Rev. B 67, 085205 (2003).
29.Hysitron, TriboScan. (Minneapolis, MN, 2011).
30.Rusband, W.: ImageJ 1.41o (National Institutes of Health, Bethesda, MD, 2008).
31.Tabor, D.: The Hardness of Metals (Oxford University Press, Oxford, UK, 1951).
32.Durandurdu, M. and Drabold, D.A.: High-pressure phases of amorphous and crystalline silicon. Phys. Rev. B 67, 212101 (2003).
33.Ivashchenko, V.I., Turchi, P.E.A., and Shevchenko, V.I.: Simulations of indentation-induced phase transformations in crystalline and amorphous silicon. Phys. Rev. B 78, 035205 (2008).
34.Piltz, R.O., Maclean, J.R., Clark, S.J., Ackland, G.J., Hatton, P.D., and Crain, J.: Structure and properties of silicon XII: A complex tetrahedrally bonded phase. Phys. Rev. B 52, 4072 (1995).
35.Ruffell, S., Bradby, J.E., Williams, J.S., and Munroe, P.: Formation and growth of nanoindentation-induced high pressure phases in crystalline and amorphous silicon. J. Appl. Phys. 102, 063521 (2007).
36.Haberl, B.: Structural characterization of amorphous silicon. Ph.D. Thesis, Australian National University, Canberra, Australian Capital Territory, Australia, 2010.
37.Ruffell, S., Bradby, J.E., and Williams, J.S.: High pressure crystalline phase formation during nanoindentation: Amorphous versus crystalline silicon. J. Appl. Phys. 89, 091919 (2006).
38.Fujisawa, N., Williams, J.S., and Swain, M.V.: On the cyclic indentation behaviour of crystalline silicon with a sharp tip. J. Mater. Res. 22, 2992 (2007).


The indentation hardness of silicon measured by instrumented indentation: What does it mean?

  • Bianca Haberl (a1), Leonardus Bimo Bayu Aji (a1), J.S. Williams (a1) and Jodie E. Bradby (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed