Skip to main content Accessibility help

In vitro evaluation of a novel multiwalled carbon nanotube/nanohydroxyapatite/polycaprolactone composite for bone tissue engineering

  • Huixiao Yang (a1), Jieqing Li (a2), Qiong Liao (a3), Hua Guo (a4), Huishan Chen (a1), Yuting Zhu (a1), Meijuan Cai (a1) and Huling Lv (a5)...


In this study, a three-phased multiwalled scaffold, composed of carbon nanotube (mwCNT), nanocrystalline hydroxyapatite (nHA), and polycaprolactone (PCL), was fabricated by the solvent evaporation technique. The structure character, mechanical properties, and degradation activity in simulated body fluid (SBF), along with osteoproductive ability in human osteosarcoma cell MG63, were investigated thoroughly. Results showed that the three phases in mwCNT/nHA/PCL composite presented excellent miscibility and stronger interfacial force when the weight content was 1/15/84 (wt%). Simultaneously, the composite had smaller porosity and slower degradation rate, and there was massive crystallized hydroxyapatite formed on the surface after being soaked in SBF. With regard to bioactivity, MG63s on this scaffolds presented good proliferation performance and differentiated into the osteogenic lineage by expressing high levels of ALP. It was concluded that mwCNTs/nHA/PCL composite scaffolds might be beneficial for bone tissue engineering at a relatively low concentration of mwCNTs and nHA.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All

These authors contributed equally to this work.



Hide All
1.Kneser, U., Schaefer, D.J., Munder, B., Klemt, C., Andree, C., and Stark, G.B.: Tissue engineering of bone. Minimally Invasive Ther. Allied Technol. 11, 107 (2004).
2.Dean, D., Min, K.J., and Bond, A.: Computer aided design of large-format prefabricated cranial plates. J. Craniofacial Surg. 14, 819 (2003).
3.Siu, T.L., Rogers, J.M., Lin, K., Thompson, R., and Owbridge, M.: Custom-made titanium 3D printed interbody cages for treatment of osteoporotic fracture related spinal deformity. World Neurosurg. 111, 1 (2018).
4.Hutmacher, D.W.: Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529 (2000).
5.Hollister, S.J.: Porous scaffold design for tissue engineering. Nat. Mater. 4, 518 (2005).
6.Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., and Kenny, J.M.: Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stab. 95, 2126 (2010).
7.Abu Bakar, M., Cheang, P., and Khor, K.: Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites. Compos. Sci. Technol. 63, 421 (2003).
8.Li, K. and Tjong, S.C.: Preparation and characterization of isotactic polypropylene reinforced with hydroxyapatite nanorods. J. Macromol. Sci., Phys. 50, 1983 (2011).
9.Tasis, D., Tagmatarchis, N., Bianco, A., and Prato, M.: Chemistry of carbon nanotubes. Chem. Rev. 106, 1105 (2006).
10.Sahithi, K., Swetha, M., Ramasamy, K., Srinivasan, N., and Selvamurugan, N.: Polymeric composites containing carbon nanotubes for bone tissue engineering. Int. J. Biol. Macromol. 46, 281 (2010).
11.Cheng, Q., Rutledge, K., and Jabbarzadeh, E.: Carbon nanotube–poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Ann. Biomed. Eng. 41, 904 (2013).
12.Liao, C.Z., Li, K., Wong, H.M., Tong, W.Y., Yeung, K.W.K., and Tjong, S.C.: Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Mater. Sci. Eng., C 33, 1380 (2013).
13.Shokuhfar, T., Makradi, A., Titus, E., Cabral, G., Ahzi, S., Sousa, A.C., Belouettar, S., and Gracio, J.: Prediction of the mechanical properties of hydroxyapatite/polymethyl methacrylate/carbon nanotubes nanocomposite. J. Nanosci. Nanotechnol. 8, 4279 (2008).
14.Zhang, J., Wen, Z., Zhao, M., and Dai, C.: Effect of the addition CNTs on performance of CaP/chitosan/coating deposited on magnesium alloy by electrophoretic deposition. Mater. Sci. Eng., C 58, 992 (2016).
15.Liao, S., Xu, G.F., Wang, W., Watari, F., Cui, F.Z., Ramakrishna, S., and Chan, C.K.: Self-assembly of nano-hydroxyapatite on multi-walled carbon nanotubes. Acta Biomater. 3, 669 (2007).
16.Woodruff, M.A. and Hutmacher, D.W.: The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci. 35, 1217 (2010).
17.Huang, J., Best, S.M., Bonfield, W., Brooks, R.A., Rushton, N., Jayasinghe, S.N., and Edirisinghe, M.J.: In vitro assessment of the biological response to nano-sized hydroxyapatite. J. Mater. Sci.: Mater. Med. 15, 441 (2004).
18.Dorj, B., Won, J.E., Kim, J.H., Choi, S.J., Shin, U.S., and Kim, H.W.: Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction. J. Biomed. Mater. Res., Part A 101, 1670 (2013).
19.Goncalves, E.M., Oliveira, F.J., Silva, R.F., Neto, M.A., Fernandes, M.H., Amaral, M., Regí, M.V., and Vila, M.: Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J. Biomed. Mater. Res., Part B 104, 1210 (2015).
20.Baji, A., Wong, S.C., Liu, T., Li, T., and Srivatsan, T.S.: Morphological and X-ray diffraction studies of crystalline hydroxyapatite-reinforced polycaprolactone. J. Biomed. Mater. Res., Part B 81, 343 (2007).
21.Kim, H.W., Knowles, J.C., and Kim, H.E.: Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 25, 1279 (2004).
22.Cadek, M., Coleman, J.N., Barron, V., Hedicke, K., and Blau, W.J.: Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 81, 5123 (2003).
23.Kokubo, T., Kim, H.M., and Kawashita, M.: Novel bioactive materials with different mechanical properties. Biomaterials 24, 2161 (2003).
24.Boyd, D., Towler, M.R., Wren, A.W., Clarkin, O.M., and Tanner, D.A.: TEM analysis of apatite surface layers observed on zinc based glass polyalkenoate cements. J. Mater. Sci. 43, 1170 (2008).
25.Zhong, X., Lu, Z.F., Valtchev, P., Wei, H., Zreiqat, H., and Dehghani, F.: Surface modification of poly(propylene carbonate) by aminolysis and layer-by-layer assembly for enhanced cytocompatibility. Colloids Surf., B 93, 75 (2012).
26.Hwang, Y.S., Sangaj, N., and Varghese, S.: Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Tissue Eng., Part A 16, 3033 (2010).
27.Anselme, K., Linez, P., Bigerelle, M., Le Maguer, D., Hardouin, P., Hildebrand, H.F., Iost, A., and Leroy, J.M.: The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials 21, 1567 (2000).
28.Tucker, B. and Lardelli, M.: A rapid apoptosis assay measuring relative acridine orange fluorescence in zebrafish embryos. Zebrafish 4, 113 (2007).
29.Vega-Avila, E. and Pugsley, M.K.: An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc. West. Pharmacol. Soc. 54, 10 (2011).
30.Anselme, K.: Osteoblast adhesion on biomaterials. Biomaterials 21, 667 (2000).
31.Neuhoff, V., Stamm, R., and Eibl, H.: Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: A systematic analysis. Electrophoresis 6, 427 (1985).
32.Li, C.Y. and Chou, T.W.: Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach. Mech. Mater. 36, 1047 (2004).
33.Zhang, Y.Z., Venugopal, J.R., El-Turki, A., Ramakrishna, S., Su, B., and Lim, C.T.: Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29, 4314 (2008).
34.Fu, S.Z., Ni, P.Y., Wang, B.Y., Chu, B.Y., Peng, J.R., Zheng, L., Zhao, X., Luo, F., Wei, Y.Q., and Qian, Z.Y.: In vivo biocompatibility and osteogenesis of electrospun poly(ε-caprolactone)–poly(ethylene glycol)–poly(ε-caprolactone)/nano-hydroxyapatite composite scaffold. Biomaterials 33, 8363 (2012).
35.Zhang, Y.B., Leblanc-Boily, V., Zhao, Y., and Prud’homme, R.E.: Wide angle X-ray diffraction investigation of crystal orientation in miscible blend of poly(ε-caprolactone)/poly(vinyl chloride) crystallized under strain. Polymer 46, 8141 (2005).
36.Cho, K., Saheb, D.N., Yang, H., Kang, B., Kim, J., and Lee, S.: Real time in situ X-ray diffraction studies on the melting memory effect in the crystallization of β-isotactic polypropylene. Polymer 44, 4053 (2003).
37.McCarthy, B., Coleman, J.N., Czerw, R., Dalton, A.B., Panhuis, M.I.H., Maiti, A., Drury, A., Bernier, P., Nagy, J.B., Lahr, B., Byrne, H.J., Carroll, D.L., and Blau, W.J.: A microscopic and spectroscopic study of interactions between carbon nanotubes and a conjugated polymer. J. Phys. Chem. B 106, 2210 (2002).
38.Pan, L.L., Pei, X.B., He, R., Wan, Q.B., and Wang, J.: Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloids Surf., B 93, 226 (2012).
39.Luo, F., Pan, L.L., Hong, G., Wang, T., Pei, X.B., Wang, J., and Wan, Q.B.: In vitro and in vivo characterization of multi-walled carbon nanotubes/polycaprolactone composite scaffolds for bone tissue engineering applications. J. Biomater. Tissue Eng. 7, 787 (2017).
40.Babensee, J.E., Anderson, J.M., McIntire, L.V., and Mikos, A.G.: Host response to tissue engineered devices. Adv. Drug Delivery Rev. 33, 111 (1998).
41.Persenaire, O., Alexandre, M., Degee, P., and Dubois, P.: Mechanisms and kinetics of thermal degradation of poly(ε-caprolactone). Biomacromolecules 2, 288 (2001).
42.Lam, C.X.F., Savalani, M.M., Teoh, S.H., and Hutmacher, D.W.: Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: Accelerated versus simulated physiological conditions. Biomed. Mater. 3, 4108 (2008).
43.Meseguer-Duenas, J.M., Mas-Estelles, J., Castilla-Cortazar, I., Escobar Ivirico, J.L., and Vidaurre, A.: Alkaline degradation study of linear and network poly(ε-caprolactone). J. Mater. Sci.: Mater. Med. 22, 11 (2011).
44.Lei, Y., Rai, B., Ho, K.H., and Teoh, S.H.: In vitro degradation of novel bioactive polycaprolactone—20% tricalcium phosphate composite scaffolds for bone engineering. Mater. Sci. Eng., C 27, 293 (2007).
45.Cadek, M., Coleman, J.N., Barron, V., Hedicke, K., and Blau, W.J.: Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 81, 5123 (2002).
46.Kokubo, T. and Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907 (2006).
47.Thalji, G., Gretzer, C., and Cooper, L.F.: Comparative molecular assessment of early osseointegration in implant-adherent cells. Bone 52, 444 (2013).
48.Costa, D.O., Prowse, P.D.H., Chrones, T., Sims, S.M., Hamilton, D.W., Rizkalla, A.S., and Jeffrey Dixon, S.: The differential regulation of osteoblast and osteoclast activity by surface topography of hydroxyapatite coatings. Biomaterials 34, 7215 (2013).
49.Freed, L.E., Vunjak-Novakovic, G., Biron, R.J., Eagles, D.B., Lesnoy, D.C., Barlow, S.K., and Langer, R.: Biodegradable polymer scaffolds for tissue engineering. Biotechnology 12, 689 (1994).
50.Yamashita, D., Machigashira, M., Miyamoto, M., Takeuchi, H., Noguchi, K., Izumi, Y., and Ban, S.: Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dent. Mater. J. 28, 461 (2009).
51.Mata, D., Oliveira, F.J., Ferro, M., Gomes, P.S., Fernandes, M.H., Lopes, M.A., and Silva, R.F.: Multifunctional carbon nanotube/bioceramics modulate the directional growth and activity of osteoblastic cells. J. Biomed. Nanotechnol. 10, 725 (2014).
52.Behring, J., Junker, R., Walboomers, X.F., Chessnut, B., and Jansen, J.A.: Toward guided tissue and bone regeneration: Morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology 96, 1 (2008).
53.Raffaini, G. and Ganazzoli, F.: Surface topography effects in protein adsorption on nanostructured carbon allotropes. Langmuir 29, 4883 (2013).
54.Lee, H.U., Jeong, Y.S., Jeong, S.Y., Park, S.Y., Bae, J.S., Kim, H.G., and Cho, C.R.: Role of reactive gas in atmospheric plasma for cell attachment and proliferation on biocompatible poly ε-caprolactone film. Appl. Surf. Sci. 254, 5700 (2008).
55.Marom, R., Shur, I., Solomon, R., and Benayahu, D.: Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells. J. Cell. Physiol. 202, 41 (2005).
56.Morelli, S., Salerno, S., Holopainen, J., Ritala, M., and Bartolo, L.D.: Osteogenic and osteoclastogenic differentiation of co-cultured cells in polylactic acid–nanohydroxyapatite fiber scaffolds. J. Biotechnol. 204, 53 (2015).
57.Abarrategi, A., Gutierrez, M.C., Moreno-Vicente, C., Hortiguela, M.J., Ramos, V., Lopez-Lacomba, J.L., Ferrer, M.L., and Monte, F.D.: Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29, 94 (2008).
58.Im, O., Li, J., Wang, M., Zhang, L.G., and Keidar, M.: Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration. Int. J. Nanomed. 7, 2087 (2012).


Related content

Powered by UNSILO

In vitro evaluation of a novel multiwalled carbon nanotube/nanohydroxyapatite/polycaprolactone composite for bone tissue engineering

  • Huixiao Yang (a1), Jieqing Li (a2), Qiong Liao (a3), Hua Guo (a4), Huishan Chen (a1), Yuting Zhu (a1), Meijuan Cai (a1) and Huling Lv (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.