Skip to main content Accessibility help
×
Home

In situ transmission electron microscopy investigation of threading dislocation motion in passivated thin aluminum films

  • R-M. Keller-Flaig (a1), M. Legros (a2), W. Sigle (a3), A. Gouldstone (a4), K. J. Hemker (a5), S. Suresh (a4) and E. Arzt (a1)...

Abstract

In situ transmission electron microscopy (TEM) was performed to study dislocation motion during temperature cycles in aluminum films passivated with a SiO2 layer. The films were cycled from room temperature to 450 °C. Wedge-haped cross-sectional TEM samples were used to retain the constraint of the Si substrate. Besides interactions between dislocations and interfaces, the movement of threading dislocations within the constrained aluminum film was observed. This observation provides an experimental corroboration of the occurrence of threading dislocation motion, which is the basis for rationalizing the high-ield strength of thin films in available models of thin-film plasticity.

Copyright

References

Hide All
1.Nix, W.D., Metall. Trans. A, 20, 2217 (1989).
2.Freund, L.B., J. Appl. Mech. 54, 553 (1987).
3.Keller, R-M., Baker, S.P., and Arzt, E., J. Mater. Res. 13, 1307 (1998).
4.Murakami, M., Thin Solid Films 59, 105 (1979).
5.Venkatraman, R. and Bravman, J.C., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W.D., Bravman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 127.
6.Venkatraman, R. and Bravman, J.C., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W.D., Bravman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 127.
7.Vinci, R.P., Zielinski, E.M., and Bravman, J.C., Thin Solid Films 262, 142 (1995).
8.Venkatraman, R., Bravman, J.C., Nix, W.D., Davies, P.W., Flinn, P.A., and Fraser, D.B., J. Electronic Mater. 19, 1231 (1990).
9.Kuan, T.S., and Murakami, M., Metall. Trans. A 13, 383 (1982).
10.Keller, R.M., Sigle, W., Baker, S.P., Kraft, O., and Arzt, E., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1996), p. 221.
11.Jawarani, D., Kawasaki, H., Yeo, I-S., Rabenberg, L., Stark, J.P., and Ho, P.S., J. Appl. Phys. 82, 171 (1997).
12.Legros, M., Keller, R-M., Gouldstone, A., Arzt, E., Hemker, K.J., and Suresh, S. (unpublished).
13.Müllner, P. and Arzt, E., in Thin Films: Stresses and Mechanical Properties VII, edited by Cammarata, R.C., Nastasi, M., Busso, E.P., and Oliver, W.C. (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998), p. 149.
14.Chu, E.C., Master Thesis, Massachusetts Institute of Technology, Cambridge, MA (1996).
15.Benedict, J.P., Anderson, R., Klepeis, S.J., and Chaker, M., in Specimen Preparation for Transmission Electron Microscopy of Materials III, edited by Anderson, R. (Mater. Res. Soc. Symp. Proc. 199, Pittsburgh, PA, 1990), p. 189.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed