Skip to main content Accessibility help

In situ stress measurements during direct MOCVD growth of GaN on SiC

  • Zakaria Y. Al Balushi (a1) and Joan M. Redwing (a2)


In situ curvature measurements were used to compare the stress evolution of GaN films grown directly on 6H-SiC via a two-step temperature growth to films grown with an AlN buffer layer. The two-step temperature growth consisted of an initial low-temperature and a main high-temperature GaN layer. In the case of GaN grown directly on 6H-SiC, the high-temperature layer initiated growth under compressive stress which transitioned to tensile stress. Films grown directly on 6H-SiC exhibited a reduction in the threading dislocation (TD) density and an improvement in the surface roughness compared to growth on the AlN buffer layer. Furthermore, transmission electron microscopy of the GaN grown directly on 6H-SiC revealed predominant (a + c)-type TD along with basal plane stacking faults and $\left\{ {11\bar 20} \right\}$ prismatic stacking faults. Channeling cracks were observed in the GaN film when the AlN buffer layer was not utilized. This was attributed to tensile stress induced from the thermal expansion coefficient mismatch.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Araujo, S., Kazanbas, M., Wendt, M., Kleeb, T., and Zacharias, P.: Prospects of GaN devices in automotive electrification. In Proceedings of the IEEE PCIM Europe 2014; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy, 2014; pp. 18.
2. Kachi, T.: GaN power devices for automotive applications. In IEEE Compound Semiconductor Integrated Circuit Symposium, 2007. (IEEE, 2007); pp. 14.
3. Kachi, T.: Recent progress of GaN power devices for automotive applications. Jpn. J. Appl. Phys. 53, 100210 (2014).
4. Shen, Z.J. and Omura, I.: Power semiconductor devices for hybrid, electric, and fuel cell vehicles. Proc. IEEE 95, 778789 (2007).
5. Ning, P., Liang, Z., Wang, F., and Marlino, L.: Power module and cooling system thermal performance evaluation for HEV application. In Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2012. (IEEE, 2012); pp. 21342139.
6. Mishra, U.K., Parikh, P., and Wu, Y.F.: AlGaN/GaN HEMTs—An overview of device operation and applications. Proc. IEEE 90, 10221031 (2002).
7. Binari, S.C., Klein, P.B., and Kazior, T.E.: Trapping effects in GaN and SiC microwave FETs. Proc. IEEE 90, 10481058 (2002).
8. Daumiller, I., Theron, D., Gaquiere, C., Vescan, A., Dietrich, R., Wieszt, A., Leier, H., Vetury, R., Mishra, U.K., Smorchkova, I.P., Keller, S., Nguyen, C., and Kohn, E.: Current instabilities in GaN-based devices. IEEE Electron Device Lett. 22, 6264 (2001).
9. Su, M., Chen, C., Chen, L., Esposto, M., and Rajan, S.: Challenges in the automotive application of GaN power switching devices. In International Conference on Compound Semiconductor Manufacturing Technology (CS MANTECH 2012) 27, 2012.
10. Chowdhury, S., Swenson, B.L., Wong, M.H., and Mishra, U.K.: Current status and scope of gallium nitride-based vertical transistors for high-power electronics application. Semicond. Sci. Technol. 28, 74014 (2013).
11. Uesugi, T. and Kachi, T.: Which are the future GaN power devices for automotive applications, lateral structures or vertical structures? In Proceeding of CSMantech. (CS MANTECH, 2011); p. 307.
12. Oka, T., Ueno, Y., Ina, T., and Hasegawa, K.: Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV. Appl. Phys. Express 7, 021002 (2014).
13. Kanechika, M., Sugimoto, M., Soejima, N., Ueda, H., Ishiguro, O., Kodama, M., Hayashi, E., Itoh, K., Uesugi, T., and Kachi, T.: A vertical insulated gate AlGaN/GaN heterojunction field-effect transistor. Jpn. J. Appl. Phys. 46, L503 (2007).
14. Wu, Y.F., Saxler, A., Moore, M., Smith, R.P., Sheppard, S., Chavarkar, P.M., Wisleder, T., Mishra, U.K., and Parikh, P.: 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Device Lett. 25, 117119 (2004).
15. Wu, Y.F., Kapolnek, D., Ibbetson, J.P., Parikh, P., Keller, B.P., and Mishra, U.K.: Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 48, 586590 (2001).
16. Neudeck, P.G., Okojie, R.S., and Chen, L.Y.: High-temperature electronics—A role for wide bandgap semiconductors? Proc. IEEE 90, 10651076 (2002).
17. Davis, R.F., Weeks, T.W. Jr., Bremser, M.D., Tanaka, S., Kern, R.S., Sitar, Z., Ailey, K.S., Perry, W.G., and Wang, C.: Issues and examples regarding growth of AlN, GaN and AlxGa1−xN thin films via OMVPE and gas source MBE. MRS Online Proc. Libr. 395, 313 (1995).
18. Lahrèche, H., Leroux, M., Laügt, M., Vaille, M., Beaumont, B., and Gibart, P.: Buffer free direct growth of GaN on 6H–SiC by metalorganic vapor phase epitaxy. J. Appl. Phys. 87, 577 (2000).
19. Di Forte-Poisson, M-A., Romann, A., Tordjman, M., Magis, M., Di Persio, J., Jacques, C., and Vicente, P.: LPMOCVD growth of GaN on silicon carbide. J. Cryst. Growth 248, 533536 (2003).
20. Kyeong Jeong, J., Choi, J-H., Jin Kim, H., Seo, H-C., Jin Kim, H., Yoon, E., Hwang, C.S., and Kim, H.J.: Buffer-layer-free growth of high-quality epitaxial GaN films on 4H-SiC substrate by metal-organic chemical vapor deposition. J. Cryst. Growth 276, 407414 (2005).
21. Losurdo, M., Giangregorio, M.M., Bruno, G., Kim, T-H., Choi, S., and Brown, A.: Buffer free MOCVD growth of GaN on 4H-SiC: Effect of substrate treatments and UV-photoirradiation. Phys. Status Solidi 203, 16071611 (2006).
22. Floro, J.A., Chason, E., and Lee, S.R.: Real time measurement of epilayer strain using a simplified wafer curvature technique. MRS Online Proc. Libr. 406, 491496 (1995).
23. Stoney, G.G.: The tension of metallic films deposited by electrolysis. Proc. R. Soc. London, Ser. A 82, 172175 (1909).
24. Koleske, D.D., Fischer, A.J., Allerman, A.A., Mitchell, C.C., Cross, K.C., Kurtz, S.R., Figiel, J.J., Fullmer, K.W., and Breiland, W.G.: Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence. Appl. Phys. Lett. 81, 1940 (2002).
25. Koleske, D.D., Coltrin, M.E., Cross, K.C., Mitchell, C.C., and Allerman, A.A.: Understanding GaN nucleation layer evolution on sapphire. J. Cryst. Growth 273, 8699 (2004).
26. Cammarata, R.C., Trimble, T.M., and Srolovitz, D.J.: Surface stress model for intrinsic stresses in thin films. J. Mater. Res. 15, 24682474 (2000).
27. Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 138 (1994).
28. Acord, J.D., Raghavan, S., Snyder, D.W., and Redwing, J.M.: In situ stress measurements during MOCVD growth of AlGaN on SiC. J. Cryst. Growth 272, 305311 (2004).
29. Romanov, A.E. and Speck, J.S.: Stress relaxation in mismatched layers due to threading dislocation inclination. Appl. Phys. Lett. 83, 2569 (2003).
30. Chason, E., Sheldon, B.W., Freund, L.B., Floro, J.A., and Hearne, S.J.: Origin of compressive residual stress in polycrystalline thin films. Phys. Rev. Lett. 88, 156103 (2002).
31. Spaepen, F.: Interfaces and stresses in thin films. Acta Mater. 48, 3142 (2000).
32. Nix, W.D. and Clemens, B.M.: Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films. J. Mater. Res. 14, 34673473 (1999).
33. Krost, A., Dadgar, A., Bläsing, J., Diez, A., Hempel, T.C., Petzold, S., Christen, J., and Clos, R.: Evolution of stress in GaN heteroepitaxy on AlN/Si(111): From hydrostatic compressive to biaxial tensile. Appl. Phys. Lett. 85, 34413443 (2004).
34. Raghavan, S. and Redwing, J.M.: Growth stresses and cracking in GaN films on (111) Si grown by metal-organic chemical-vapor deposition. I. AlN buffer layers. J. Appl. Phys. 98, 23514 (2005).
35. Abermann, R.: Measurements of the intrinsic stress in thin metal films. Vacuum 41, 12791282 (1990).
36. Koch, R.: The intrinsic stress of polycrystalline and epitaxial thin metal films. J. Phys.: Condens. Matter 6, 9519 (1994).
37. Harima, H.: Properties of GaN and related compounds studied by means of Raman scattering. J. Phys.: Condens. Matter 14, R967 (2002).
38. Perlin, P., Jauberthie-Carillon, C., Itie, J.P., San Miguel, A., Grzegory, I.I., and Polian, A.: Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure. Phys. Rev. B: Condens. Matter Mater. Phys. 45, 8389 (1992).
39. Kisielowski, C., Krüger, J., Ruvimov, S., Suski, T., Ager, J.W. III, Jones, E., Liliental-Weber, Z., Rubin, M., Weber, E.R., Bremser, M.D., and Davis, R.F.: Strain-related phenomena in GaN thin films. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 1774517753 (1996).
40. Ren, Z., Sun, Q., Kwon, S-Y., Han, J., Davitt, K., Song, Y.K., Nurmikko, A.V., Cho, H-K., Liu, W., Smart, J.A., and Schowalter, L.J.: Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes. Appl. Phys. Lett. 91, 051116 (2007).
41. Won, D., Weng, X., Al Balushi, Z., and Redwing, J.M.: Influence of growth stress on the surface morphology of N-polar GaN films grown on vicinal C-face SiC substrates. Appl. Phys. Lett. 103, 241908 (2013).
42. Moram, M.A. and Vickers, M.E.: X-ray diffraction of III-nitrides. Rep. Prog. Phys. 72, 36502 (2009).
43. Srikant, V., Speck, J.S., and Clarke, D.R.: Mosaic structure in epitaxial thin films having large lattice mismatch. J. Appl. Phys. 82, 4286 (1997).
44. Gay, P., Hirsch, P.B., and Kelly, A.: The estimation of dislocation densities in metals from X-ray data. Acta Metall. 1, 315319 (1953).
45. Vermaut, P., Ruterana, P., Nouet, G., Salvador, A., and Morkoç, H.: Prismatic defects in GaN grown on 6H-SiC by molecular beam epitaxy. Mater. Sci. Eng., B 43, 279282 (1997).


Related content

Powered by UNSILO

In situ stress measurements during direct MOCVD growth of GaN on SiC

  • Zakaria Y. Al Balushi (a1) and Joan M. Redwing (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.