Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T21:31:40.625Z Has data issue: false hasContentIssue false

In situ silver nanoparticle synthesis on 3D-printed polylactic acid scaffolds for biomedical applications

Published online by Cambridge University Press:  03 September 2020

Semih Calamak*
Affiliation:
Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara06100, Turkey
Menekse Ermis
Affiliation:
BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara06800, Turkey
*
a)Address all correspondence to this author. e-mail: semihcalamak@hacettepe.edu.tr
Get access

Abstract

An ultraviolet (UV) irradiation-based in situ silver nanoparticle (AgNP) synthesis approach has drawn significant attention for functionalizing a great variety of biomaterials. Here, we designed an AgNP-functionalized 3D-printed polylactic acid (PLA) composite scaffold with a green physical approach by employing the UV irradiation (1, 2, and 3 h) method without using any reducing agent or heat treatments. In situ AgNP synthesis was performed under different UV exposure times. The zeta sizer analysis results demonstrated that AgNPs were highly monodisperse with the particle size of 20 ± 2.2, 30 ± 3.6, and 50 ± 4.8 nm under various UV light exposure times. In situ synthesis of AgNPs on 3D-printed PLA scaffolds significantly changed the surface hydrophilicity of the 3D-printed scaffolds. These results showed that UV irradiation-based in situ AgNP synthesis on 3D-printed PLA scaffolds can be useful in various biomedical applications, such as cell culture scaffolds, biosensors, and wound healing applications.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dasgupta, N. and Ramalingam, C.: Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environ. Chem. Lett. 14, 477485 (2016).CrossRefGoogle Scholar
Sabela, M., Balme, S., Bechelany, M., Janot, J.M., and Bisetty, K.: A review of gold and silver nanoparticle-based colorimetric sensing assays. Adv. Eng. Mater. 19, 1700270 (2017).CrossRefGoogle Scholar
Elechiguerra, J.L., Burt, J.L., Morones, J.R., Camacho-Bragado, A., Gao, X., Lara, H.H., and Yacaman, M.J.: Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3, 6 (2005).CrossRefGoogle ScholarPubMed
Liao, G., Li, Q., Zhao, W., Pang, Q., Gao, H., and Xu, Z.: In-situ construction of novel silver nanoparticle decorated polymeric spheres as highly active and stable catalysts for reduction of methylene blue dye. Appl. Catal. A 549, 102111 (2018).CrossRefGoogle Scholar
Gudikandula, K. and Charya Maringanti, S.: Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. J. Exp. Nanosci. 11, 714721 (2016).CrossRefGoogle Scholar
Barbasz, A., Oćwieja, M., and Roman, M.: Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60. Colloids Surf. B 156, 397404 (2017).CrossRefGoogle ScholarPubMed
Gurusamy, V., Krishnamoorthy, R., Gopal, B., and Veeraravagan, V.: Systematic investigation on hydrazine hydrate assisted reduction of silver nanoparticles and its antibacterial properties. Inorg. Nano-Met. Chem. 47, 761767 (2017).CrossRefGoogle Scholar
Huang, S., Zhou, L., Li, M.-C., Wu, Q., Kojima, Y., and Zhou, D.: Preparation and properties of electrospun poly (vinyl pyrrolidone)/cellulose nanocrystal/silver nanoparticle composite fibers. Materials 9, 523 (2016).CrossRefGoogle ScholarPubMed
Wagener, P., Ibrahimkutty, S., Menzel, A., Plech, A., and Barcikowski, S.: Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid. Phys. Chem. Chem. Phys. 15, 30683074 (2013).CrossRefGoogle ScholarPubMed
Peng, H., Yang, A., and Xiong, J.: Green, microwave-assisted synthesis of silver nanoparticles using bamboo hemicelluloses and glucose in an aqueous medium. Carbohydr. Polym.91, 348355 (2013).CrossRefGoogle Scholar
Wani, I.A., Ganguly, A., Ahmed, J., and Ahmad, T.: Silver nanoparticles: Ultrasonic wave assisted synthesis, optical characterization and surface area studies. Mater. Lett. 65, 520522 (2011).CrossRefGoogle Scholar
Liu, Y., Chen, S., Zhong, L., and Wu, G.: Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer under gamma radiation. Radiat. Phys. Chem. 78, 251255 (2009).CrossRefGoogle Scholar
Calamak, S., Aksoy, E.A., Erdogdu, C., Sagıroglu, M., and Ulubayram, K.: Silver nanoparticle containing silk fibroin bionanotextiles. J. Nanopart. Res. 17, 87 (2015).CrossRefGoogle Scholar
Calamak, S., Aksoy, E.A., Ertas, N., Erdogdu, C., Sagıroglu, M., and Ulubayram, K.: Ag/silk fibroin nanofibers: Effect of fibroin morphology on Ag+ release and antibacterial activity. Eur. Polym. J. 67, 99112 (2015).CrossRefGoogle Scholar
Radoń, A. and Łukowiec, D.: Silver nanoparticles synthesized by UV-irradiation method using chloramine T as modifier: Structure, formation mechanism and catalytic activity. CrystEngComm 20, 71307136 (2018).CrossRefGoogle Scholar
Shameli, K., Ahmad, M.B., Yunus, W.M.Z.W., Rustaiyan, A., Ibrahim, N.A., Zargar, M., and Abdollahi, Y.: Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity. Int. J. Nanomed. 5, 875 (2010).CrossRefGoogle ScholarPubMed
Son, W.K., Youk, J.H., and Park, W.H.: Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr. Polym. 65, 430434 (2006).CrossRefGoogle Scholar
Silva, A.M., de Araújo, C.B., Santos-Silva, S., and Galembeck, A.: Silver nanoparticle in situ growth within crosslinked poly (ester-co-styrene) induced by UV irradiation: Aggregation control with exposure time. J. Phys. Chem. Solids 68, 729733 (2007).CrossRefGoogle Scholar
Patakfalvi, R., Oszko, A., and Dékány, I.: Synthesis and characterization of silver nanoparticle/kaolinite composites. Colloids Surf. A 220, 4554 (2003).CrossRefGoogle Scholar
Courrol, L.C., de Oliveira Silva, F.R., and Gomes, L.: A simple method to synthesize silver nanoparticles by photo-reduction. Colloids Surf. A 305, 5457 (2007).CrossRefGoogle Scholar
Kim, F., Song, J.H., and Yang, P.: Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 124, 1431614317 (2002).CrossRefGoogle ScholarPubMed
Chen, X., Gao, C., Jiang, J., Wu, Y., Zhu, P., and Chen, G.: 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Biomed. Mater. 14, 065003 (2019).CrossRefGoogle ScholarPubMed
Teixeira, B.N., Aprile, P., Mendonça, R.H., Kelly, D.J., and Thiré, R.M.D.S.M.: Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. J. Biomed. Mater. Res. B 107, 3749 (2019).CrossRefGoogle ScholarPubMed
Sarigol-Calamak, E. and Hascicek, C.: Tissue scaffolds as a local drug delivery system for bone regeneration. In Cutting-Edge Enabling Technologies for Regenerative Medicine, Chun, H.J., Park, C.H., Kwon, I.K. and Khang, G., eds. (Springer, Singapore, 2018), pp. 475493.CrossRefGoogle Scholar
Choi, W.J., Hwang, K.S., Kwon, H.J., Lee, C., Kim, C.H., Kim, T.H., Heo, S.W., Kim, J.-H., and Lee, J.-Y.: Rapid development of dual porous poly (lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application. Mater. Sci. Eng. C 110693 (2020).CrossRefGoogle ScholarPubMed
Kao, C.-T., Lin, C.-C., Chen, Y.-W., Yeh, C.-H., Fang, H.-Y., and Shie, M.-Y.: Poly (dopamine) coating of 3D printed poly (lactic acid) scaffolds for bone tissue engineering. Mater. Sci. Eng. C 56, 165173 (2015).CrossRefGoogle ScholarPubMed
Li, X., Wang, Y., Guo, M., Wang, Z., Shao, N., Zhang, P., Chen, X., and Huang, Y.: Degradable three dimensional-printed polylactic acid scaffold with long-term antibacterial activity. ACS Sustain. Chem. Eng. 6, 20472054 (2018).CrossRefGoogle Scholar
Scaffaro, R., Lopresti, F., Sutera, A., Botta, L., Fontana, R.M., and Gallo, G.: Plasma modified PLA electrospun membranes for actinorhodin production intensification in Streptomyces coelicolor immobilized-cell cultivations. Colloids Surf. B 157, 233241 (2017).CrossRefGoogle ScholarPubMed
Wang, Y., Ren, R., Ling, J., Sun, W., and Shen, Z.: One-pot “grafting-from” synthesis of amphiphilic bottlebrush block copolymers containing PLA and PVP side chains via tandem ROP and RAFT polymerization. Polymer 138, 378386 (2018).CrossRefGoogle Scholar
Quirk, R.A., Chan, W.C., Davies, M.C., Tendler, S.J., and Shakesheff, K.M.: Poly (L-lysine)–GRGDS as a biomimetic surface modifier for poly (lactic acid). Biomaterials 22, 865872 (2001).CrossRefGoogle Scholar
Alipilakkotte, S. and Sreejith, L.: Green synthesized PLA/silver nanoparticle probe for sensing of hydrogen peroxide in biological samples. Mater. Lett. 217, 3338 (2018).CrossRefGoogle Scholar
Xu, X., Yang, Q., Wang, Y., Yu, H., Chen, X., and Jing, X.: Biodegradable electrospun poly (L-lactide) fibers containing antibacterial silver nanoparticles. Eur. Polym. J. 42, 20812087 (2006).CrossRefGoogle Scholar
Cuiffo, M.A., Snyder, J., Elliott, A.M., Romero, N., Kannan, S., and Halada, G.P.: Impact of the fused deposition (FDM) printing process on polylactic acid (PLA) chemistry and structure. Appl. Sci. 7, 579 (2017).CrossRefGoogle Scholar
Spinelli, G., Kotsilkova, R., Ivanov, E., Petrova-Doycheva, I., Menseidov, D., Georgiev, V., Di Maio, R., and Silvestre, C.: Effects of filament extrusion, 3D printing and hot-pressing on electrical and tensile properties of poly (lactic) acid composites filled with carbon nanotubes and graphene. Nanomaterials 10, 35 (2020).CrossRefGoogle Scholar
Song, Y., Li, Y., Song, W., Yee, K., Lee, K.-Y., and Tagarielli, V.L.: Measurements of the mechanical response of unidirectional 3D-printed PLA. Mater. Des. 123, 154164 (2017).CrossRefGoogle Scholar
Xu, G.-N., Qiao, X.-L., Qiu, X.-L., and Chen, J.-G.: Preparation and characterization of stable monodisperse silver nanoparticles via photoreduction. Colloids Surf. A 320, 222226 (2008).CrossRefGoogle Scholar
Calamak, S. and Ulubayram, K.: Polyethylenimine-mediated gold nanoparticle arrays with tunable electric field enhancement for plasmonic applications. J. Mater. Sci. Mater. Electron. 30, 1001310023 (2019).CrossRefGoogle Scholar
Corre, Y.-M., Maazouz, A., Duchet, J., and Reignier, J.: Batch foaming of chain extended PLA with supercritical CO2: Influence of the rheological properties and the process parameters on the cellular structure. J. Supercrit. Fluids 58, 177188 (2011).CrossRefGoogle Scholar
Guillen, J. and Cantwell, W.: The influence of cooling rate on the fracture properties of a thermoplastic-based fibre-metal laminate. J. Reinf. Plast. Compos. 21, 749772 (2002).CrossRefGoogle Scholar
Jalali, A., Huneault, M.A., and Elkoun, S.: Effect of thermal history on nucleation and crystallization of poly (lactic acid). J. Mater. Sci. 51, 77687779 (2016).CrossRefGoogle Scholar
Liu, H., Li, W., Luo, B., Chen, X., Wen, W., and Zhou, C.: Icariin immobilized electrospinning poly (L-lactide) fibrous membranes via polydopamine adhesive coating with enhanced cytocompatibility and osteogenic activity. Mater. Sci. Eng. C 79, 399409 (2017).CrossRefGoogle ScholarPubMed
Wu, F., Zheng, J., Li, Z., and Liu, M.: Halloysite nanotubes coated 3D printed PLA pattern for guiding human mesenchymal stem cells (hMSCs) orientation. Chem. Eng. J. 359, 672683 (2019).CrossRefGoogle Scholar
Martin, V., Ribeiro, I.A., Alves, M.M., Gonçalves, L., Claudio, R.A., Grenho, L., Fernandes, M.H., Gomes, P., Santos, C.F., and Bettencourt, A.F.: Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanohydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Mater. Sci. Eng. C 101, 1526 (2019).CrossRefGoogle ScholarPubMed
Rasoulianboroujeni, M., Fahimipour, F., Shah, P., Khoshroo, K., Tahriri, M., Eslami, H., Yadegari, A., Dashtimoghadam, E., and Tayebi, L.: Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications. Mater. Sci. Eng. C 96, 105113 (2019).CrossRefGoogle ScholarPubMed
Basri, H., Ismail, A.F., and Aziz, M.: Polyethersulfone (PES)–silver composite UF membrane: Effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity. Desalination 273, 7280 (2011).CrossRefGoogle Scholar
Sile-Yuksel, M., Tas, B., Koseoglu-Imer, D.Y., and Koyuncu, I.: Effect of silver nanoparticle (AgNP) location in nanocomposite membrane matrix fabricated with different polymer type on antibacterial mechanism. Desalination 347, 120130 (2014).CrossRefGoogle Scholar
Kasraei, S. and Azarsina, M.: Addition of silver nanoparticles reduces the wettability of methacrylate and silorane-based composites. Braz. Oral Res. 26, 505510 (2012).CrossRefGoogle ScholarPubMed