Skip to main content Accessibility help
×
Home

In situ measurement of deformation mechanics and its spatio-temporal scaling behavior in equal channel angular pressing

  • Marzyeh Moradi (a1), Saurabh Basu (a1) and Meenakshisundaram Ravi Shankar (a1)

Abstract

Deformation mechanics in equal channel angular pressing (ECAP) was studied in situ using digital image correlation (DIC) and infra-red (IR) thermography. In a prototypical experiment in an optical and IR transparent die, the deformation of commercially pure lead (Pb) is observed using high-speed optical and IR cameras. From the resulting time-sequence images of metal-flow in the deformation zone, DIC is used to characterize the zone of severe plastic deformation (SPD) as a function of the scale of deformation (sample dimensions), deformation speed, and die geometry. The temperature rise in the deformation zone was characterized using IR thermography and the results were compared against theoretical estimates. These observations provide direct insights into the mechanics of SPD in ECAP, which can offer strategies for microstructure control, process optimization, and miniaturization of ECAP.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: ravishm@pitt.edu

References

Hide All
1. Iwahashi, Y., Horita, Z., Nemoto, M., and Langdon, T.G.: The process of grain refinement in equal-channel angular pressing. Acta Mater. 46(9), 3317 (1998).
2. Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M., and Langdon, T.G.: Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr. Mater. 35(2), 143 (1996).
3. Raab, G., Soshnikova, E., and Valiev, R.: Influence of temperature and hydrostatic pressure during equal-channel angular pressing on the microstructure of commercial-purity Ti. Mater. Sci. Eng., A 387, 674 (2004).
4. Zehetbauer, M., Stüwe, H., Vorhauer, A., Schafler, E., and Kohout, J.: The role of hydrostatic pressure in severe plastic deformation. Adv. Eng. Mater. 5(5), 330 (2003).
5. Abolghasem, S., Basu, S., Shekhar, S., Cai, J., and Shankar, M.: Mapping subgrain sizes resulting from severe simple shear deformation. Acta Mater. 60(1), 376 (2012).
6. Stoica, G., Fielden, D., McDaniels, R., Liu, Y., Huang, B., Liaw, P., Xu, C., and Langdon, T.: An analysis of the shear zone for metals deformed by equal-channel angular processing. Mater. Sci. Eng., A 410, 239 (2005).
7. Figueiredo, R.B., Aguilar, M.T.P., and Cetlin, P.R.: Finite element modelling of plastic instability during ECAP processing of flow-softening materials. Mater. Sci. Eng., A 430(1), 179 (2006).
8. Suh, J-Y., Kim, H-S., Park, J-W., and Chang, J-Y.: Finite element analysis of material flow in equal channel angular pressing. Scr. Mater. 44(4), 677 (2001).
9. Bruck, H., McNeill, S., Sutton, M.A., and Peters Iii, W.: Digital image correlation using Newton-Raphson method of partial differential correction. Exp. Mech. 29(3), 261 (1989).
10. Pan, B., Qian, K., Xie, H., and Asundi, A.: Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas. Sci. Technol. 20(6), 062001 (2009).
11. Steijn, R.: On the wear of sapphire. J. Appl. Phys. 32(10), 1951 (1961).
12. Balasundar, I. and Raghu, T.: Effect of friction model in numerical analysis of equal channel angular pressing process. Mater. Des. 31(1), 449 (2010).
13. Balasundar, I., Sudhakara Rao, M., and Raghu, T.: Equal channel angular pressing die to extrude a variety of materials. Mater. Des. 30(4), 1050 (2009).
14. Kim, H.S., Seo, M.H., and Hong, S.I.: On the die corner gap formation in equal channel angular pressing. Mater. Sci. Eng., A 291(1), 86 (2000).
15. Lee, S., Hwang, J., Shankar, M.R., Chandrasekar, S., and Compton, W.D.: Large strain deformation field in machining. Metall. Mater. Trans. A 37(5), 1633 (2006).
16. Doyle, E., Horne, J., and Tabor, D.: Frictional interactions between chip and rake face in continuous chip formation. Proc. R. Soc. A 366(1725), 173 (1979).
17. Valiev, R.Z. and Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51(7), 881 (2006).
18. Adrian, R.J.: Twenty years of particle image velocimetry. Exp. Fluids 39(2), 159 (2005).
19. Verhulp, E., Rietbergen, B.v., and Huiskes, R.: A three-dimensional digital image correlation technique for strain measurements in microstructures. J. Biomech. 37(9), 1313 (2004).
20. Palmer, W. and Oxley, P.: Mechanics of orthogonal machining. Proc. Inst. Mech. Eng. 173(1), 623 (1959).
21. Marusich, T. and Ortiz, M.: Modelling and simulation of high speed machining. Int. J. Numer. Methods Eng. 38(21), 3675 (1995).
22. Oxley, P. and Hastings, W.: Predicting the strain rate in the zone of intense shear in which the chip is formed in machining from the dynamic flow stress properties of the work material and the cutting conditions. Proc. R. Soc. A 356(1686), 395 (1977).
23. Lapovok, R., Tóth, L.S., Molinari, A., and Estrin, Y.: Strain localisation patterns under equal-channel angular pressing. J. Mech. Phys. Solids 57(1), 122 (2009).
24. Shekhar, S., Cai, J., Wang, J., and Shankar, M.: Multimodal ultrafine grain size distributions from severe plastic deformation at high strain rates. Mater. Sci. Eng., A 527(1), 187 (2009).
25. Abolghasem, S., Basu, S., and Shankar, M.R.: Quantifying the progression of dynamic recrystallization in severe shear deformation at high strain rates. J. Mater. Res. 28(15), 2056 (2013).
26. Kim, H.S.: Prediction of temperature rise in equal channel angular pressing. Mater. Trans., JIM 42(3), 536 (2001).
27. Dong, Y., Zhang, Y., Alexandrov, I., and Wang, J.: Effect of high strain rate processing on strength and ductility of ultrafine-grained Cu processed by equal channel angular pressing. Rev. Adv. Mater. Sci. 31, 116 (2012).
28. Quang, P., Krishnaiah, A., Hong, S.I., and Kim, H.S.: Coupled analysis of heat transfer and deformation in equal channel angular pressing of Al and steel. Mater. Trans. 50(1), 40 (2009).
29. Ravichandran, G., Rosakis, A.J., Hodowany, J., and Rosakis, P.: On the conversion of plastic work into heat during high-strain-rate deformation. Am. Inst. Phys., Conf. Proc. 620(1), 557 (2002).
30. Mason, J., Rosakis, A., and Ravichandran, G.: On the strain and strain rate dependence of the fraction of plastic work converted to heat: An experimental study using high speed infrared detectors and the Kolsky bar. Mech. Mater. 17(2), 135 (1994).
31. Eisenlohr, A., Gutierrez-Urrutia, I., and Raabe, D.: Adiabatic temperature increase associated with deformation twinning and dislocation plasticity. Acta Mater. 60(9), 3994 (2012).
32. Kim, H.S., Quang, P., Seo, M.H., Hong, S.I., Baik, K.H., Lee, H.R., and Nghiep, D.M.: Process modelling of equal channel angular pressing for ultrafine grained materials. Mater. Trans. 45(7), 2172 (2004).
33. Yamaguchi, D., Horita, Z., Nemoto, M., and Langdon, T.G.: Significance of adiabatic heating in equal-channel angular pressing. Scr. Mater. 41(8), 791 (1999).
34. Nishida, Y., Ando, T., Nagase, M., Lim, S-w., Shigematsu, I., and Watazu, A.: Billet temperature rise during equal-channel angular pressing. Scr. Mater. 46(3), 211 (2002).
35. Li, S., Hoferlin, E., Bael, A.V., Houtte, P.V., and Teodosiu, C.: Finite element modeling of plastic anisotropy induced by texture and strain-path change. Int. J. Plast. 19(5), 647 (2003).
36. Paul, H., Baudin, T., and Brisset, F.: The effect of the strain path and the second phase particles on the microstructure and the texture evolution of the AA3104 alloy processed by ECAP. Arch. Metall. Mater. 56(2), 245 (2011).

Keywords

In situ measurement of deformation mechanics and its spatio-temporal scaling behavior in equal channel angular pressing

  • Marzyeh Moradi (a1), Saurabh Basu (a1) and Meenakshisundaram Ravi Shankar (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed