Skip to main content Accessibility help
×
Home

In situ characterization of polycrystalline ferroelectrics using x-ray and neutron diffraction – ERRATUM

Published online by Cambridge University Press:  17 February 2015

Abstract

Image of the first page of this article

Type
Erratum
Copyright
Copyright © Materials Research Society 2015 

doi: 10.1557/jmr.2014.302, Published by Materials Research Society with Cambridge University Press, 28 October 2014.

In Esteves et al.1, on page 12,

In PMN-PT, the diffraction pattern appears cubic, i.e., there is no splitting of Bragg peaks that indicate symmetry lowering with temperature change. However, the use of PDFs has enabled the characterization of polar nanoregions (PNRs) that exist within a pseudocubic matrix.102 Within the PNRs, the displacement of cations parallel to [111] indicates local rhombohedral distortions, though the average symmetry measured at a longer length scale remains cubic. A similar phenomenon was observed in PMN-PT where the PNRs are larger (∼150 Å at 300 K) than PMN-PT (∼20 Å at 300 K) and are visible in powder diffraction by splitting of Bragg peaks thus resulting a rhombohedral structure below 325 K.

should read:

In PMN, the diffraction pattern appears cubic, i.e., there is no splitting of Bragg peaks that indicate symmetry lowering with temperature change. However, the use of PDFs has enabled the characterization of polar nanoregions (PNRs) that exist within a pseudocubic matrix.102 Within the PNRs, the displacement of cations parallel to [111] indicates local rhombohedral distortions, though the average symmetry measured at a longer length scale remains cubic. A similar phenomenon was observed in PZN where the PNRs are larger (∼150 Å at 300 K) than PMN (∼20 Å at 300 K) and are visible in powder diffraction by splitting of Bragg peaks thus resulting a rhombohedral structure below 325 K.100

The publisher regrets the mistake.


References

Esteves, G., Fancher, C.M., and Jones, J.L.: In situ characterization of polycrystalline ferroelectrics using x-ray and neutron diffraction. J. Mater. Res. 30(3) (2015). doi: 10.1557/jmr.2014.302.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 7
Total number of PDF views: 104 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th December 2020. This data will be updated every 24 hours.

Access
Hostname: page-component-b4dcdd7-ppfm2 Total loading time: 0.41 Render date: 2020-12-05T22:30:38.560Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 22:01:06 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

In situ characterization of polycrystalline ferroelectrics using x-ray and neutron diffraction – ERRATUM
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

In situ characterization of polycrystalline ferroelectrics using x-ray and neutron diffraction – ERRATUM
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

In situ characterization of polycrystalline ferroelectrics using x-ray and neutron diffraction – ERRATUM
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *