Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-23T04:55:00.832Z Has data issue: false hasContentIssue false

Identification of tetragonal and cubic structures of zirconia using synchrotron x-radiation source

Published online by Cambridge University Press:  31 January 2011

Ram Srinivasan
Affiliation:
Center for Applied Energy Research, University of Kentucky, 3572 Iron Works Pike, Lexington, Kentucky 40511–8433
Robert J. De Angelis
Affiliation:
Department of Mechanical Engineering, 255 Walter Scott Engineering Center, University of Nebraska at Lincoln, Lincoln, Nebraska 68688–0525
Gene Ice
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Burtron H. Davis
Affiliation:
Center for Applied Energy Research, University of Kentucky, 3572 Iron Works Pike, Lexington, Kentucky 40511–8433
Get access

Abstract

X-ray diffraction from a synchrotron source was employed in an attempt to identify the crystal structures in zirconia ceramics produced by the sol-gel method. The particles of chemically precipitated zirconia, after calcination below 600 °C, are very fine, and have a diffracting particle size in the range of 7–15 nm. As the tetragonal and cubic structures of zirconia have similar lattice parameters, it is difficult to distinguish between the two. The tetragonal structure can be identified only by the characteristic splittings of the Bragg profiles from the “c” index planes. However, these split Bragg peaks from the tetragonal phase in zirconia overlap with one another due to particle size broadening. In order to distinguish between the tetragonal and cubic structures of zirconia, three samples were studied using synchrotron radiation source. The results indicated that a sample containing 13 mol% yttria-stabilized zirconia possessed the cubic structure with a0 = 0.51420 ± 0.00012 nm. A sample containing 6.5 mol% yttria stabilized zirconia was found to consist of a cubic phase with a0 = 0.51430 ± 0.00008 nm. Finally, a sample which was precipitated from a pH 13.5 solution was observed to have the tetragonal structure with a0 = 0.51441 ± 0.00085 nm and c0 = 0.51902 ± 0.00086.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ruff, O. and Ebert, F. Z., Anorg. U. All. Gem. Chem. 180, 1941 (1929).CrossRefGoogle Scholar
2.Murray, P. and Allison, E. B., Trans. Brit. Ceram. Soc. 53 (6), 335361 (1954).Google Scholar
3.Lynch, C. T., Bahldiek, F. W., and Robinson, L. B., J. Am. Ceram. Soc. 44 (3), 147148 (1961).CrossRefGoogle Scholar
4.Patil, R. N. and Subba Rao, E. C., Acta Crystallogr. A26, 555 (1970).Google Scholar
5.Maiti, H. S., Gokhale, K. V. G. K., and Subba Rao, E. C., J. Am. Ceram. Soc. 55 (6), 317322 (1972).CrossRefGoogle Scholar
6.Hueur, A. H. and Rühle, M., in Advances in Ceramics, edited by Claussen, N., Rühle, M. and Hueur, A. H. (Am. Ceram. Soc, Columbus, OH, 1984), Vol. 12, pp. 113.Google Scholar
7.Suyama, R., Ashida, T., and Kume, S., J. Am. Ceram. Soc. 68 (12), C134 (1985).Google Scholar
8.Garvie, R. C., Hannink, R. H., and Pascoe, R. T., Nature 258, 703 (1975).CrossRefGoogle Scholar
9.Mazdiyasni, K. S., Lynch, C. T., and Smith, J. S., II, J. Am. Ceram. Soc. 50 (10), 532 (1967).CrossRefGoogle Scholar
10.Davis, B. H., J. Am. Ceram. Soc. 67 (8), C168 (1984).Google Scholar
11.Srinivasan, R., De Angelis, R. J., and Davis, B. H., J. Mater. Res. 1, 583 (1986).CrossRefGoogle Scholar
12.Srinivasan, R., Harris, M. B., Simpson, S. F., De Angelis, R. J., and Davis, B. H., J. Mater. Res. 3, 787 (1988).CrossRefGoogle Scholar
13.Jada, S. S. and Peletis, N. G., J. Mater. Sci. Lett. 8, 243246 (1989).CrossRefGoogle Scholar
14.Mamott, G. T., Barnes, P., Tarling, S. E., Jones, S. L., and Norman, C. J., Powder Diffraction 3 (4), 234239 (1988).CrossRefGoogle Scholar
15. Magnesium Elektron Publication #113, Zirconia and Zirconia Ceramics, edited by Stevens, R. (Magnesium Elektron Ltd., 1986).Google Scholar
16.Srivastava, K. K., Patil, R. N., Choudhary, C. B., Gokhale, K. V. G. K., and Subba Rao, E. C., Trans. Brit. Ceram. Soc. 73 (5), 8591 (1974).Google Scholar
17.Miller, R. A., Garlick, R. G., and Smialek, J. L., J. Am. Ceram. Soc. Bull. 62 (12) (1983).Google Scholar
18.Miller, R. A., Smialek, J. L., and Garlick, R. G., in Adv. Ceram. III. Science and Technology of Zirconia, edited by Hener, A. H. and Hobbs, L. W. (Am. Ceram. Soc, Columbus, OH, 1981), pp. 241253.Google Scholar
19.Hannink, R. H. J., J. Mater. Sci. 13, 2487 (1978).CrossRefGoogle Scholar
20.Paterson, A. and Stevens, R., J. Mater. Res. 1, 295 (1986).CrossRefGoogle Scholar
21.Benedetti, A., Fagherazzi, G., and Pinna, F., J. Am. Ceram. Soc. 72 (3), 467 (1989).CrossRefGoogle Scholar
22.Hastings, J. B., Thomlinson, W., and Cox, D. E., J. Appl. Cryst. 17, 8589 (1984).CrossRefGoogle Scholar
23.Gupta, T. K., J. Mater. Sci. 12, 24212426 (1977).CrossRefGoogle Scholar
24.Klug, H. P. and Alexander, L. E., X-Ray Diffraction Procedures (Wiley & Sons, New York, 1967), p. 491.Google Scholar
25.Mueller, M. H., Heaton, L., and Miller, K. T., Acta Crystallogr. 13, 828 (1960).CrossRefGoogle Scholar
26.Srinivasan, R., Simpson, S. F., Harris, J. M., and Davis, B. H., J. Mater. Sci. Lett, (in press).Google Scholar