Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T10:19:48.368Z Has data issue: false hasContentIssue false

Hydrothermal synthesis of heteroepitaxial Pb(ZrxTi1−x)O3 thin films at 90–150 °C

Published online by Cambridge University Press:  31 January 2011

A. T. Chien
Affiliation:
Materials Research Laboratory and Materials Department, University of California, Santa Barbara, California 93106
J. S. Speck
Affiliation:
Materials Research Laboratory and Materials Department, University of California, Santa Barbara, California 93106
F. F. Lange
Affiliation:
Materials Research Laboratory and Materials Department, University of California, Santa Barbara, California 93106
Get access

Abstract

Pb(ZrxTi1−x)O3 and PbZrO3 heteroepitaxial thin films were produced in an aqueous solution (10 M KOH) at ambient pressure and low temperatures (90–150 °C) on (001) SrTiO3 and LaAlO3 single crystal substrates. Growth of the Pb(ZrxTi1−x)O3 and PbZrO3 thin films initiates by the formation of {100} faceted islands. Energy dispersive spectroscopy (EDS) analysis of the Pb(ZrxTi1−x)O3 thin film shows that the Zr: Ti ratio is 45: 56, nearly identical to the molar ratio of the precursors. This route might provide a viable low temperature alternative for the formation of high dielectric constant thin films for applications such as dynamic random access memory (DRAM).

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Dawson, W., Ceram. Bull. 67, 1673 (1988).Google Scholar
2.Chien, A. T., Speck, J. S., Lange, F. F., Daykin, A., and Levi, C., J. Mater. Res. 10, 1784 (1995).CrossRefGoogle Scholar
3.Kutty, T. and Balachandran, R., Mater. Res. Bull. 19, 1479 (1984).CrossRefGoogle Scholar
4.Beal, K., in Advances in Ceramics Vol. 21, Ceramic Powder Science, edited by Messing, G. L., Fuller, E. R. Jr, and Hausner, H. (American Ceramic Society, Westerville, OH, 1987), p. 33.Google Scholar
5.Shimomura, K., Tsurumi, T., Ohba, Y., and Daimon, M., Jpn. J. Appl. Phys. 31, 2174 (1991).CrossRefGoogle Scholar
6.Lencka, M., Anderko, A., and Riman, R., J. Am. Ceram. Soc. 78, 2609 (1995).CrossRefGoogle Scholar
7.Chen, Q., Qian, Y., Chen, Z., Wu, W., Chen, Z., Zhou, G., and Zhang, Y., Appl. Phys. Lett. 66, 1608 (1995).CrossRefGoogle Scholar
8.Chen, Q., Qian, Y., Chen, Z., and Zhang, Y., Mater. Lett. 22, 93 (1995).CrossRefGoogle Scholar
9.Kajiyoshi, K., Ishizawa, N., and Yoshimura, M., Jpn. J. Appl. Phys. 30, L120 (1991).CrossRefGoogle Scholar
10.Tuttle, B., Voight, J., Goodnow, D., Lamppa, D., Headley, T., Eatough, M., Zender, G., Nasby, D., and Rodgers, S., J. Am. Ceram. Soc. 76, 1537 (1993).CrossRefGoogle Scholar