Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T09:02:08.488Z Has data issue: false hasContentIssue false

Hydrothermal synthesis of Co-doped In2S3 micropompons and their physical properties

Published online by Cambridge University Press:  31 January 2011

Anuja Datta*
Affiliation:
Department of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
Dibyendu Ganguli
Affiliation:
Department of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
Subhadra Chaudhuri
Affiliation:
Department of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
*
a)Address all correspondence to this author. e-mail: anuja.datta@gmail.com
Get access

Abstract

In2−xCoxS3 (x = 0 to 0.1) micropompons (diameters ∼3–4 μm) consisting of ∼10–15-nm-thick randomly self-assembled nanoflakes were synthesized hydrothermally. X-ray study indicated a steady variation of lattice parameter ratio up to 5% Co. Detailed investigations of the Co incorporation in In2S3 were carried out by optical absorbance, room temperature photoluminescence (PL), and electron paramagnetic resonance (EPR) studies. Significant blue shift in the absorbance spectra was noticed due to the crystal-field splitting of Co2+ ions in the host lattice structure. Unlike the visible emission found in undoped In2S3, PL spectra of the Co-doped samples were recognized by a strong ultraviolet emission peak at ∼335 nm, introduced by the t2g level of Co2+ ions, with maximum intensity for 5% Co. Room-temperature and low-temperature EPR spectra revealed octet paramagnetic bands up to 5% Co beyond which a single resonance band appeared.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science 281, 951 1998CrossRefGoogle ScholarPubMed
2Prinz, G.A.: Magnetoelectronics. Science 282, 1660 1998CrossRefGoogle ScholarPubMed
3Fiederling, R., Keim, M., Reuscher, G., Ossau, W., Schmidt, G., Waag, A.Molenkamp, L.W.: Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787 1999CrossRefGoogle Scholar
4Baranowski, J.M., Allen, J.W.Pearson, G.L.: Crystal-field spectra of 3dn impurities in II-VI and III-V compound semiconductors. Phys. Rev. 160, 627 1967CrossRefGoogle Scholar
5Kim, W.T.Kim, C.D.J.: Optical energy gaps of β–In2S3 thin films grown by spray pyrolysis. J. Appl. Phys. 60, 2631 1986CrossRefGoogle Scholar
6Nomura, R., Inazawa, S., Kanaya, K.Matsuda, H.: Thermal decomposition of butylindium thiolates and preparation of indium sulfide powders. Appl. Organomet. Chem. 3, 195 1989Google Scholar
7Asikainen, T., Ritala, M.Leskela, M.: Growth of In2S3 thin films by atomic layer epitaxy. Appl. Surf. Sci. 82–83, 122 1994CrossRefGoogle Scholar
8Dalas, E.Kobotiatis, L.J.: Aqueous precipitation and electrical properties of In2S3: Characterization of the In2S3/polyaniline and In2S3/polypyrrole heterojunctions. J. Mater. Sci. 28, 5456 1993CrossRefGoogle Scholar
9Diehl, R.Nitsche, R.: Vapor growth of three In2S3 modifications by iodine transport. J. Cryst. Growth 28, 306 1975CrossRefGoogle Scholar
10Choe, S.H., Band, T.H., Kim, N.O., Kim, H.G., Lee, C.I., Jin, M.S., Oh, W.T.Kim, W.T.: Optical properties of β–In2S3 and β–In2S3: Co2+ single crystals. Semicond. Sci. Technol 16, 98 2001Google Scholar
11Datta, A., Panda, S.K., Ganguli, D., Mishra, P.Chaudhuri, S.: In2S3 micropompons and their conversion to In2O3 nanobipyramids: Simple synthesis approaches and characterization. Cryst. Growth Des. 7, 163 2007Google Scholar
12Kim, C.D., Lim, H., Park, H.L., Park, H.Y., Kim, J.E., Kim, H.G., Kim, Y.G.Kim, W.T.: Optical absorption of Co2+ ions in In2S3 thin films. Thin Solid Films 224, 69 1993Google Scholar
13Datta, A., Gorai, S.Chaudhuri, S.: Synthesis and characterization of sol-gel derived Mn2+ doped In2S3 nanocrystallites embedded in a silica matrix. J. Nanoparticle Res. 8, 919 2006CrossRefGoogle Scholar
14JCPDS No. 25-0390. National Bureau of Standards, Monogr. 25, 30 1974Google Scholar
15Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 1976CrossRefGoogle Scholar
16Gorai, S., Ganguli, D.Chaudhuri, S.: Synthesis of 1D Cu2S with tailored morphology via single and mixed ionic surfactant templates. Mater. Chem. Phys. 88, 383 2004Google Scholar
17Nagesha, D.K., Liang, X.R., Mamodov, A., Gainer, G., Eastman, M.A., Giersig, M., Song, J.Kotov, N.A.: In2S3 nanocolloids with excitonic emission: In2S3 vs CdS comparative study of optical and structural characteristics. J. Phys. Chem. B 105, 7490 2001Google Scholar
18Wi, S.C., Kang, J-S., Kim, J.H., Cho, S-B., Kim, B.J., Yoon, S.Suh, B.J.: Electronic structure of Zn1–xCoxO using photoemission and x-ray absorption spectroscopy. Appl. Phys. Lett. 84, 4233 2004Google Scholar
19Abdelaziz, M.Abdelrazek, E.M.: Effect of equal amounts of Mn and Co dopant addition on the structural, electrical and magnetic properties of PVDF films. Physica B (Amsterdam) 349, 84 2004CrossRefGoogle Scholar
20Misra, S.K., Andronenko, S.I., Reddy, K.M., Hays, J.Punnoose, A.: Magnetic resonance studies of Co2+ ions in nanoparticles of SnO2 processed at different temperatures. J. App. Phys. 99, 08M106 2006CrossRefGoogle Scholar