Skip to main content Accessibility help

Hydrogen behavior in Mg+-implanted graphite

  • W. Jiang (a1), V. Shutthanandan (a1), Y. Zhang (a1), S. Thevuthasan (a1), W.J. Weber (a1) and G.J. Exarhos (a1)...


A graphite wafer has been implanted with Mg+ to produce a uniform Mg concentration. Subsequent H+ implantation covered the Mg+-implanted and -unimplanted regions. Ion-beam analysis shows a higher H retention in graphite embedded with Mg than in regions without Mg. A small amount of H diffuses out of the H+-implanted graphite during thermal annealing at temperatures up to 300 °C. However, significant H release from the region implanted with Mg+ and H+ ions occurs at 150 °C; further release is also observed at 300 °C. The results suggest that there are efficient H trapping centers and fast pathways for H diffusion in the Mg+-implanted graphite, which may prove highly desirable for reversible H storage.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1.Schlapbach, L., Zuttel, A.: Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001).
2.Bogdanovic, B., Sandrock, G.: Catalyzed complex metal hydrides. MRS Bull. 27, 712 (2002).
3.Williamson, A.J., Reboredo, F.A., Galli, G.: Chemisorption on semiconductor nanocomposites: A mechanism for hydrogen storage. Appl. Phys. Lett. 85, 2917 (2004).
4. Workshop report chaired by M. Dresselhaus: Basic Research Needs for the Hydrogen Economy, Office of Science, U.S. Department of Energy, Washington, DC, May 13–15, 2003.
5.Noritake, T., Aoki, M., Towata, S., Seno, Y., Hirose, Y., Nishibori, E., Takata, M., Sakata, M: Chemical bonding of hydrogen in MgH2. Appl. Phys. Lett. 81, 2008 (2002).
6.Imamura, H., Tabata, S., Shigetomi, N., Takesue, Y., Sakata, Y.: Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium. J. Alloys Comp. 330–332, 579 (2002).
7.Au, M. Hydrogen storage properties of magnesium based nanostructured/amorphous composite materials in Materials and Technology for Hydrogen Economy, edited by Naeri, G-A., Nazri, M., Young, R., and Chen, P. (Mater. Res. Soc. Symp. Proc. 801, Warrendale, PA, 2004). BB1.5, p. 41.
8.Meldrum, A., Haglund, R.F. Jr. Boatner, L.A., White, C.W.: Nanocomposite materials formed by ion implantation. Adv. Mater. 13, 1431 (2001).
9.Wang, C.M., Thevuthasan, S., Shutthanandan, V., Cavanagh, A., Jiang, W., Thomas, L.E., Weber, W.J.: Microstructure of precipitated Au nanoclusters in MgO. J. Appl. Phys. 93, 6327 (2003).
10.Ziegler, J.F., Biersack, J.P., Littmark, U.: The Stopping and Range of Ions in Solids (Pergamon, New York, 1985); see also
11.Morita, K., Ohtsuka, K., Hasebe, Y.: Dynamic measurements of depth profiles of hydrogen implanted into graphite at elevated temperatures. J. Nucl. Mater. 162–164, 990 (1989).
12.Siegele, R., Roth, J., Scherzer, B.M.U., Pennycook, S.J.: Damage and deuterium trapping in highly-oriented pyrolytic graphite. J. Appl. Phys. 73, 2225 (1993).
13.Katayama, K., Nishikawa, M.: Release behavior of tritium from graphite material. Fusion Sci. Tech. 41, 53 (2002).
14.Chen, Y., Gonzalez, R., Tsang, K.L.: Diffusion of deuterium and hydrogen in rutile TiO2 crystals at low temperatures. Phys. Rev. Lett. 53, 1077 (1984).
15.Belkbir, L., Joly, E., Gérard, N.: Comparative study of the formation-decomposition mechanisms and kinetics in LaNi5 and magnesium reversible hydrides. Int. J. Hydrogen Energy 6, 285 (1981).
16.Higuchi, K., Yamamoto, K., Kajioka, H., Toiyama, K., Honda, M., Orimo, S., Fujii, H.: Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films. J. Alloys Comp. 330–332, 526 (2002).
17.Doyle, B.L., Wampler, W.R., Brice, D.K.: Temperature dependence of H saturation and isotope exchange. J. Nucl. Mater. 103, 513 (1981).
18.Compagnini, G., Baratta, G.: Polarized Raman spectroscopy in ion irradiated graphite. Appl. Phys. Lett. 61, 1796 (1992).
19.Elman, B.S., Shayegan, M., Dresselhaus, M.S., Mazurek, H., Dresselhaus, G.: Structural characterization of ion-implanted graphite. Phys. Rev. B 25, 4142 (1982).
20.Kaschner, A., Siegle, H., Kaczmarczyk, G., Strassburg, M., Hoffmann, A., Thomsen, C., Birkle, U., Einfeldt, S., Hommel, D.: Local vibrational modes in Mg-doped GaN grown by molecular beam epitaxy. Appl. Phys. Lett. 74, 3281 (1999).
21.Cuscó, R., Artús, L., Pastor, D., Naranjo, F.B., Calleja, E.: Local vibrational modes of H complexes in Mg-doped GaN grown by molecular beam epitaxy. Appl. Phys. Lett. 84, 897 (2004).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed