Skip to main content Accessibility help

Hydrogen Absorption of Nanoscale Pd Particles Embedded in ZrO2 Matrix Prepared from Zr–Pd Amorphous Alloys

  • Shin-Ichi Yamaura (a1), Ken-Ichiro Sasamori (a1), Hisamichi Kimura (a1), Akihisa Inoue (a1), Yue Chang Zhang (a2) and Yoshiaki Arata (a2)...


Nanocomposite materials consisting of ZrO2 and Pd phases were prepared by heating the amorphous Zr65Pd35 alloy for 24 h at 553 K in air. The maximum hydrogen absorption amount is about 2.4 mass% (H2/Pd) at 323 K and 2.2 mass% (H2/Pd) at 423 K at hydrogen pressure of 1 MPa. The absorption amount of Pd nanoparticles in the nanocomposite is a few times larger than those for the bulk and powder Pd metals. The remarkable increase in the hydrogen absorption/desorption amounts seems to result from the isolated dispersion state of Pd nanoparticles in the ZrO2 phase containing a tremendously large interface area in the nanocomposite.


Corresponding author

a)Address all correspondence to this author.


Hide All
1.Kimura, H.M., Inoue, A., and Masumoto, T., Mater. Lett. 14, 232 (1992).
2.Kimura, H.M., Asami, K., Inoue, A., and Masumoto, T., Corros. Sci. 35, 909 (1993).
3.Kimura, H.M., Inoue, A., Masumoto, T., and Itabashi, S., Sci. Rep. Res. Inst. Tohoku Univ. A–33, 183 (1986).
4.Inoue, A. and Kimura, H.M., J. Jpn. Inst. Light Met . 49, 214 (1999).
5.Zuettel, A., Nuetzenadel, Ch., Schmid, G., Chartouni, D., and Schlapbach, L., J. Alloys Compd. 293–295, 472 (1999).
6.Pundt, A., Sachs, C., Winter, M., Reetz, M.T., Fritsch, D., and Kirchheim, R., J. Alloys Compd. 293–295, 480 (1999).
7.Salomons, E., Griessen, R., Groot, D.G. De, and Magerl, A., Europhys. Lett. 5, 449 (1988).
8.Eastman, J.A., Thompson, L.J., and Kestel, B.J., Phys. Rev. B 48, 84 (1993).
9.Song, M.Y., Int. J. Hydrogen Energy 20, 221 (1995).
10.Spada, F.E., Bowman, R.C. Jr., and Cantrell, J.S., J. Less-Common Met. 129, 197 (1987).
11.Wagner, J.E., Bowman, R.C. Jr., and Cantrell, J.S., J. Appl. Phys. 58, 4573 (1985).
12.Maeland, A.J., J. Less-Common Met. 89, 173 (1983).
13.Nevitt, M.V., Downey, J.W., and Morris, R.A., AIME Trans. 218, 1019 (1960).
14.Rotella, F.J., Flotow, H.E., Gruen, D.M., and Jorgensen, J.D., J. Chem. Phys. 79, 4522 (1983).
15.Zavaliy, I.Y., Yelon, W.B., Zavalij, P.Y., Saldan, I.V., and Pecharsky, V.K., J. Alloys Compd. 309, 75 (2000).
16.Zavaliy, I., Wojcik, G., Mlynarek, G., Saldan, I., Yartys, V., and Kopczyk, M., J. Alloys Compd. 314, 124 (2001).
17.Paljevic, M. and Ban, Z., J. Less-Common Met. 105, 83 (1985).
18.Huang, Y.C., Fujita, K., and Uchida, H., Bull. Jpn. Inst. Met. 18, 694 (1970).
19.Lewis, A., The Palladium Hydrogen System (Academic Press, New York and London, United Kingdom, 1967).
20.Frieske, H. and Wicke, E., Ber. Bunsen-Ges. Phys. Chem. 77, 48 (1973).


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed