Skip to main content Accessibility help
×
Home

Hydriding kinetics of ball-milled nanocrystalline MgH2 powders

  • Á. Révész (a1), D. Fátay (a1) and T. Spassov (a2)

Abstract

The kinetics of hydride formation and decomposition described by semiempirical models generally do not involve particle and grain-size dependence. However, ball-milled nanocrystalline powders usually exhibit log-normal grain-size and particle-size distribution. Considering size dependence, a total reacted function for a multiparticle system has been developed. We show that the shape of the measured reaction fraction curves do not determine unambiguously the rate-controlling mechanism of hydrogen sorption, since the kinetics are strongly affected by the microstructure. With the application the convolutional multiple whole profile fitting procedure for nanocrystalline MgH2, the parameters, e.g., the median and variance of the log-normal grain-size distribution have been determined. Taking these values into account, the reaction constants corresponding to different sorption states are considerably modified compared with values obtained from classical single-particle models.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: reveszadam@ludens.elte.hu

References

Hide All
1Sandrock, G.: A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J. Alloys Compd. 293–295, 877 1999
2E. David, E: An overview of advanced materials for hydrogen storage. J. Mater. Proc. Tech. 162–163, 169 2005
3Bououdina, M., Grant, D.Walker, G.: Review on hydrogen absorbing materials—structure, microstructure, and thermodynamic properties. Int. J. Hydrogen Energy 31, 177 2006
4Bowman, R.C.Fultz, B.: Hydrogen storage and other gas-phase applications. MRS Bull. 27, 688 2002
5Buschow, K.H.J., Bouten, P.C.P.Miedema, A.R.: Hydrides formed from intermetallic compounds of 2 transition-metals—A special-class of ternary alloys. Rep. Prog. Phys. 45, 937 1982
6Yermakov, A.Y., Mushnikov, N.V., Uimin, M.A., Gaviko, V.S., Tankeev, A.P., Skripov, A.V., Soloninin, A.V.Buzlukov, A.L.: Hydrogen reaction kinetics of Mg-based alloys synthesized by mechanical milling. J. Alloys Compd. 425, 367 2006
7Varin, R.A., Czujko, T., Chiu, Ch.Wronski, Z.: Particle size effects on the desorption properties of nanostructured magnesium dihydride (MgH2) synthesized by controlled reactive mechanical milling (CRMM). J. Alloys Compd. 424, 356 2006
8Imamura, H., Masanari, K., Kusuhara, M., Katsumoto, H., Sumi, T.Sakata, Y.: High hydrogen storage capacity of nanosized magnesium synthesized by high-energy ball milling. J. Alloys Compd. 386, 211 2005
9Zaluski, L., Zaluska, A., Tessier, P., Ström-Olsen, J.O.Schulz, R.: Nanocrystalline hydrogen absorbing alloys. Mater Sci. Forum 225, 853 1996
10Liang, G., Boily, S., Huot, J., Van Neste, A.Schulz, R.: Mechanical alloying and hydrogen absorption properties of the Mg–Ni system. J. Alloys Compd. 276, 302 1998
11Liang, G., Boily, S., Huot, J., Van Neste, A.Schulz, R.: Hydrogen absorption properties of a mechanically milled Mg– 50wt%LaNi5 composite. J. Alloys Compd. 268, 302 1998
12Liang, G.: Synthesis and hydrogen storage properties of Mg-based alloys. J. Alloys Compd. 370, 123 2004
13Oelerich, W., Klassen, T.Bormann, R.: Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J. Alloys Compd. 315, 237 2001
14Barkhordarian, G., Klassen, T.Borman, R.: Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. J. Alloys Compd. 49, 213 2003
15Barkhordarian, G., Klassen, T.Borman, R.: Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J. Alloys Compd. 364, 242 2004
16Varin, R.A., Czujko, T.Wronski, Z.: Particle size, grain size and gamma-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling. Nanotechnology 17, 3856 2006
17Révész, Á., Fátay, D., Zander, D.Spassov, T.: Influence of particle size on the hydrogen sorption properties of ball-milled MgH2 with Nb2O5 as catalyst. J. Metast. Nanocr. Mater. 24–25, 447 2005
18Fátay, D., Révész, Á.Spassov, T.: Particle size and catalytic effect on the dehydriding of MgH2. J. Alloys Compd. 399, 237 2005
19Asakuma, Y., Miyauchi, S., Yamamoto, T., Aoki, H.Miura, T.: Numerical analysis of absorbing and desorbing mechanism for the metal hydride by homogenization method. Int. J. Hydrogen Energy 28, 529 2003
20Chou, K.C., Li, Q., Lin, Q., Jiang, L.J.Xu, K.D.: Kinetics of absorption and desorption of hydrogen in alloy powder. Int. J. Hydrogen Energy 30, 301 2005
21Mintz, M.H.Zeiri, Y.: Hydriding kinetics of powders. J. Alloys Compd. 216, 159 1994
22Barkhordarian, G., Klassen, T.Borman, R.: Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalysed with different Nb2O5 contents. J. Alloys Compd. 407, 249 2006
23Schweppe, F., Martin, M.Fromm, E.: Model on hydride formation describing surface control, diffusion control and transition regions. J. Alloys Compd. 261, 254 1997
24Bloch, L.: The kinetics of a moving metal hydride layer. J. Alloys Compd. 312, 135 2000
25Gabis, I.E., Voit, A.P., Evard, E.A., Zaika, Y.V., Chernov, I.A.Yartys, V.A.: Kinetics of hydrogen desorption from the powders of metal hydrides. J. Alloys Compd. 404–406, 312 2005
26Jacobs, P.W.M.Tompkins, F.C.: Classification and theory of solid reactions in Chemistry of the Solid State, edited by W.E. Garner Butterworth London 1955 184–212
27Avrami, M.: Kinetics of phase change II. J. Chem. Phys. 8, 212 1940
28Krill, C.E.Birringer, R.: Estimating grain-size distributions in nanocrystalline materials from x-ray diffraction profile analysis. Philos. Mag. 77, 621 1998
29Williamson, G.K.Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 1953
30Warren, B.E.Averbach, B.L.: The effect of cold-work distortion on x-ray patterns J. Appl. Phys. 21, 55 1950
31van Berkum, J.G.M., Vermuelen, A.C., Delhez, R., de Keijser, T.H.Mittemeijer, E.J.: Applicabilities of the Warren-Averbach analysis and an alternative analysis for separation of size and strain broadening. J. Appl. Crystallogr. 27, 345 1994
32Ungár, T.Borbély, A.: The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis. Appl. Phys. Lett. 69, 3173 1996
33Ribárik, G., Gubicza, J.Ungár, T.: Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by x-ray diffraction. Mater. Sci. Eng., A 387–389, 343 2004
34Ungár, T., Dragomir, I., Révész, Á.Borbély, A.: The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 32, 992 1999
35Ungár, T.Tichy, G.: The effect of dislocation contrast on x-ray line profiles in untextured polycrystals. Phys. Status. Solidi A 171, 425 1999
36Ungár, T., Gubicza, J., Ribárik, G.Borbély, A.: Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 34, 298 2001
37JCPDS No. 12-0697. International Center for Diffraction Data Newton Square PA 1960
38JCPDS No. 35-1184. International Center for Diffraction Data Newton Square PA 1980
39Fátay, D., Spassov, T., Delchev, P., Ribárik, G.Révész, Á.: Microstructural development in nanocrystalline MgH2 during H-absorption/desorption cycling. Int. J. Hydrogen Energy, doi: 10.1016/j.ijhydene.2006.12.018,2007

Keywords

Hydriding kinetics of ball-milled nanocrystalline MgH2 powders

  • Á. Révész (a1), D. Fátay (a1) and T. Spassov (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.