Skip to main content Accessibility help

High-performance antistatic acrylic coating by incorporation with modified graphene

  • Yanjun Zhao (a1), Weiyu Yao (a1), Yu Wang (a1), Quan Wang (a1), Feipeng Lou (a1) and Weihong Guo (a1)...


Graphene (G) has attracted great interest because of its excellent chemical and electrical properties. However, the aggregation of graphene restricts its application. Herein, linoleic acid sodium salt (LASS), a low-cost and environmentally friendly material, was used to improve the dispersion of graphene through covalent interaction. Then, the mixture (G@LASS) was integrated with acrylic resin matrix via hydrogen bond between the carboxyl and ester groups. The excellent interfacial compatibility between G@LASS and acrylic matrix, as well as good dispersibility of G@LASS, was demonstrated by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman, and scanning electron microscopy tests. Compared with acrylic matrix, the surface hydrophobicity of G@LASS@Acrylic increased considerably because of its compact structure. G@LASS@Acrylic composites meet the requirement of antistatic materials when the content of G was only about 0.5 wt%. The results showed that conductive pathways were established successfully through this method.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Du, K., Han, W., Zhen, L., and Wang, Z.Q.: The experiment on aging resistance of antiaging coating for slope protection sandbags. J. Yangtze River Sci. Res. Inst. 28, 58 (2011).
2.Bethencourt, M., Botana, F.J., Cano, M.J., Osuna, R.M., and Marcos, M.: Lifetime prediction of waterborne acrylic paints with the AC–DC–AC method. Prog. Org. Coat. 49, 275 (2004).
3.Gonzalez, I., Mestach, D., Leiza, J.R., and Asua, J.M.: Adhesion enhancement in waterborne acrylic latex binders synthesized with phosphate methacrylate monomers. Prog. Org. Coat. 61, 38 (2008).
4.Li, J.H., Li, M., Da, H.F., Liu, Q., and Liu, M.H.: Preparation of Nylon-6/flake graphite derivatives composites with antistatic property and thermal stability. Composites, Part A 43, 1038 (2012).
5.Aal, N.A., El-Tantawy, F., Al-Hajry, A., and Bououdina, M.: New antistatic charge and electromagnetic shielding effectiveness from conductive epoxy resin/plasticized carbon black composites. Polym. Compos. 29, 125 (2010).
6.Tang, W.H., Liu, B.B., Liu, Z.W., Tang, J., and Yuan, H.L.: Processing-dependent high impact polystyrene/styrene-butadiene-styrene tri-block copolymer/carbon black antistatic composites. J. Appl. Polym. Sci. 123, 1032 (2012).
7.Sangermano, M., Pegel, S., Pötschke, P., and Voit, B.: Antistatic epoxy coatings with carbon nanotubes obtained by cationic photopolymerization. Macromol. Rapid Commun. 29, 396 (2008).
8.Li, C.S., Liang, T.X., Lu, W.Z., Tang, C.H., Hu, X.Q., Cao, M.S., and Liang, J.: Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes. Compos. Sci. Technol. 64, 2089 (2004).
9.Li, K.D., Zhang, C., Du, Z.J., Li, H.Q., and Zou, W.: Preparation of humidity-responsive antistatic carbon nanotube/PEI nanocomposites. Synth. Met. 162, 2010 (2012).
10.Wang, Y., Liu, M.M., Liu, Y.Q., Luo, J.Q., Lu, X.Y., and Sun, J.: A novel mica-titania@graphene core–shell structured antistatic composite pearlescent pigment. Dyes Pigm. 136, 197 (2017).
11.Wang, H., Xie, G.Y., Fang, M.H., Ying, Z., Tong, Y., and Zeng, Y.: Electrical and mechanical properties of antistatic PVC films containing multi-layer graphene. Composites, Part B 79, 444 (2015).
12.Martins, C.R. and Paoli, M.A.D.: Antistatic thermoplastic blend of polyaniline and polystyrene prepared in a double-screw extruder. Eur. Polym. J. 41, 2867 (2005).
13.Wang, J.G., Zhang, C., Du, Z.J., Li, H.Q., and Zou, W.: Functionalization of MWCNTs with silver nanoparticles decorated polypyrrole and their application in antistatic and thermal conductive epoxy matrix nanocomposite. RSC Adv. 6, 31782 (2016).
14.Lee, C.G., Wei, X.D., Kysar, J.W., and Honel, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).
15.Yuan, B.H., Bao, C.L., Qian, X.D., Jiang, S.H., Wen, P.Y., Xing, W.Y., Song, L., Liew, K.M., and Hu, Y.: Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite. Ind. Eng. Chem. Res. 53, 1143 (2014).
16.Wu, C., Huang, X.Y., Wang, G.L., Lv, L.B., Chen, G., Li, G.Y., and Jiang, P.K.: Highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process. Adv. Funct. Mater. 23, 506 (2013).
17.Allen, M.J., Tung, V.C., and Kaner, R.B.: Honeycomb carbon: A review of graphene. Chem. Rev. 110, 132 (2010).
18.Viculis, L.M., Mack, J.J., and Kaner, R.B.: A chemical route to carbon nanoscrolls. Science 299, 1361 (2003).
19.Liu, X.Q., Zhang, J.M., Yan, R., Zhang, Q.Y., and Liu, X.H.: Preparation of graphene nanoplatelet–titanate nanotube composite and its advantages over the two single components as biosensor immobilization materials. Biosens. Bioelectron. 51, 76 (2014).
20.Das, A.K., Maiti, S., and Khatua, B.B.: High performance electrode material prepared through in situ, polymerization of aniline in the presence of zinc acetate and graphene nanoplatelets for supercapacitor application. J. Electroanal. Chem. 739, 10 (2015).
21.Larouche, N. and Stansfield, B.L.: Classifying nanostructured carbons using graphitic indices derived from Raman spectra. Carbon 48, 620 (2010).
22.Li, S.R., Liu, S.C., Fu, Z.W., Li, Q.Y., Wu, C.F., and Guo, W.H.: Surface modification and characterization of carbon black by sodium lignosulphonate. Surf. Interface Anal. 49, 197 (2016).
23.Mao, M.L., Jiang, L., Wu, L.C., Zhang, M., and Wang, T.H.: The structure control of ZnS/graphene composites and their excellent properties for lithium-ion battery. J. Mater. Chem. A 3, 13384 (2015).
24.Ryu, S., Lee, Y.H., Hwang, J.W., Hong, S., Kim, C., Park, T.G., Lee, H., and Hong, S.H.: High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer. Adv. Mater. 23, 1971 (2011).
25.Ryu, S., Chou, J.B., Lee, K., Lee, D.J., Hong, S.H., Zhao, R., Lee, H., and Kim, S.G.: Direct insulation-to-conduction transformation of adhesive catecholamine for simultaneous increases of electrical conductivity and mechanical strength of CNT fibers. Adv. Mater. 27, 3250 (2015).
26.Valentini, L., Bon, S.B., Lopez-Manchado, M.A., Verdejo, R., Pappalardo, L., Bolognini, A., Alvino, A., Borsini, S., Berardo, A., and Pugno, N.M.: Synergistic effect of graphene nanoplatelets and carbon black in multifunctional EPDM nanocomposites. Compos. Sci. Technol. 128, 123 (2016).
27.Cançado, L.G., Jorio, A., Martins Ferreira, E.H., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O., Lombardo, A., Kulmala, T.S., and Ferrari, A.C.: Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190 (2011).
28.Li, X.S., Cai, W.W., An, J.H., Kim, S., Nah, J., Yang, D.X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., and Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009).
29.Su, Y., Du, J.H., Sun, D.M., Liu, C., and Cheng, H.M.: Reduced graphene oxide with a highly restored π-conjugated structure for inkjet printing and its use in all-carbon transistors. Nano Res. 6, 842 (2013).
30.Messina, E., Leone, N., Foti, A., Marco, G.D., Riccucci, C., Carlo, G.D., Maggio, F.D., Cassata, A., Gargano, L., D’Andrea, C., Fazio, B., Maragò, O.M., Robba, B., Vasi, C., Ingo, G.M., and Gucciardi, P.G.: Double-wall nanotubes and graphene nanoplatelets for hybrid conductive adhesives with enhanced thermal and electrical conductivity. ACS Appl. Mater. Interfaces 8, 23244 (2016).
31.Marra, F., D’Aloia, A.G., Tamburrano, A., Ochando, I.M., Debellis, G., Ellis, G.J., and Sarto, M.S.: Electromagnetic and dynamic mechanical properties of epoxy and vinylester-based composites filled with graphene nanoplatelets. Polymer 8, 272 (2016).
32.Shulga, Y.M., Baskakov, S.A., Abalyaeva, V.V., Efimov, O.N., Shulga, N.Y., Michtchenko, A., Lartundo-Rojas, L., Moreno-R, L.A., Cabañas-Moreno, J.G., and Vasilets, V.N.: Composite material for supercapacitors formed by polymerization of aniline in the presence of graphene oxide nanosheets. J. Power Sources 224, 195 (2013).
33.Li, Y.F., Zhu, J.H., Wei, S.Y., Ryu, J., Sun, L.Y., and Guo, Z.H.: Poly(propylene)/graphene nanoplatelet nanocomposites: Melt rheological behavior and thermal, electrical, and electronic properties. Macromol. Chem. Phys. 212, 1951 (2011).
34.Da, S.X., Wang, J., Geng, H.Z., Jia, S.L., Xu, C.X., Li, L.G., Shi, P.P., and Li, G.F.: High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes. Appl. Surf. Sci. 392, 1117 (2017).
35.Yu, S.M., Qin, F., and Wang, G.C.: Improving dielectric properties of poly(vinylidene fluoride) composites induced by poly(vinyl pyrrolidone)-encapsulated polyaniline nanorods. J. Mater. Chem. C 4, 1504 (2016).
36.Dang, Z.M., Wang, L., Yin, Y., Zhang, Q., and Lei, Q.Q.: Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv. Mater. 19, 852 (2007).


Type Description Title
Supplementary materials

Zhao et al. supplementary material
Zhao et al. supplementary material 1

 Word (3.3 MB)
3.3 MB

High-performance antistatic acrylic coating by incorporation with modified graphene

  • Yanjun Zhao (a1), Weiyu Yao (a1), Yu Wang (a1), Quan Wang (a1), Feipeng Lou (a1) and Weihong Guo (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed