Skip to main content Accessibility help

Highly efficient solar steam generation by hybrid plasmonic structured TiN/mesoporous anodized alumina membrane

  • Yue Bian (a1), Kun Tang (a1), Zhonghua Xu (a1), Jingrui Ma (a1), Yang Shen (a1), Licai Hao (a1), Xuanhu Chen (a1), Kuiying Nie (a1), Jing Li (a1), Tongchuan Ma (a1), Shunming Zhu (a1), Jiandong Ye (a1), Xiang Xiong (a2), Yi Yang (a1), Rong Zhang (a1), Youdou Zheng (a1) and Shulin Gu (a1)...


Given the global water challenges, solar-driven steam generation has become a renewed topic recently as an energy-efficient way for clean water production. Here, a hybrid plasmonic structure consisting of a top layer of TiN nanoparticles (NPs) and a bottom layer of mesoporous anodized alumina membrane (AAM) was rationally designed and fabricated. The top TiN NPs with broadband light absorption acted as a plasmonic heating layer, which converted the absorbed light to heat efficiently for interfacial water heating. The AAM acted as the mechanical support layer, guaranteeing the heat isolation and continuous water replenishment. With optimized thickness of the TiN top layer, a solar steam generation efficiency of 87.7% was achieved in this study. This efficiency is comparable or even higher than prior studies. The current work proves the capability of the TiN NPs as an alternative photothermal material.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Elimelech, M. and Phillip, W.A.: The future of seawater desalination: Energy, technology, and the environment. Science 333, 712 (2011).
2.Mekonnen, M.M. and Hoekstra, A.Y.: Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).
3.Haddeland, I., Heinke, J., Biemans, H., Eisner, S., FlöRke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., and Schewe, J.: Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. U. S. A. 111, 3251 (2014).
4.Zhou, L., Zhuang, S., He, C., Tan, Y., Wang, Z., and Zhu, J.: Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy 32, 195 (2017).
5.Hu, X., Xu, W., Zhou, L., Tan, Y., Wang, Y., Zhu, S., and Zhu, J.: Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 29, 5 (2017).
6.Zielinski, M.S., Choi, J.W., La Grange, T., Modestino, M., Hashemi, S.M., Pu, Y., Birkhold, S., Hubbell, J.A., and Psaltis, D.: Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano Lett. 16, 2159 (2016).
7.Zeng, Y., Yao, J., Horri, B.A., Wang, K., Wu, Y., Li, D., and Wang, H.: Solar evaporation enhancement using floating light-absorbing magnetic particles. Energy Environ. Sci. 4, 4074 (2011).
8.Ghasemi, H., Ni, G., Marconnet, A.M., Loomis, J., Yerci, S., Miljkovic, N., and Chen, G.: Solar steam generation by heat localization. Nat. Commun. 5, 4449 (2014).
9.Wang, X., He, Y., Liu, X., Shi, L., and Zhu, J.: Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Sol. Energy 157, 35 (2017).
10.Ito, Y., Tanabe, Y., Han, J., Fujita, T., Tanigaki, K., and Chen, M.: Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 27, 4302 (2015).
11.Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J., and Mayes, A.M.: Science and technology for water purification in the coming decades. Nature 452, 301 (2008).
12.Zhang, L., Tang, B., Wu, J., Li, R., and Wang, P.: Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889 (2015).
13.Bae, K., Kang, G., Cho, S.K., Park, W., Kim, K., and Padilla, W.J.: Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015).
14.Zhou, L., Tan, Y., Ji, D., Zhu, B., Zhang, P., Xu, J., Gan, Q., Yu, Z., and Zhu, J.: Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016).
15.Tiwari, G.N., Singh, H.N., and Tripathi, R.: Present status of solar distillation. Sol. Energy 75, 367 (2003).
16.Neumann, O., Neumann, A.D., Silva, E., Ayala, O.C., Tian, S., Nordlander, P., and Halas, N.J.: Nanoparticle-mediated, light-induced phase separations. Nano Lett. 15, 7880 (2015).
17.Neumann, O., Urban, A.S., Day, J., Lal, S., Nordlander, P., and Halas, N.J.: Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42 (2013).
18.Zhou, L., Tan, Y., Wang, J., Xu, W., Yuan, Y., Cai, W., Zhu, S., and Zhu, J.: 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 10, 393 (2016).
19.Sharon, H. and Reddy, K.S.: A review of solar energy driven desalination technologies. Renewable Sustainable Energy Rev. 41, 1080 (2015).
20.Xiao, G., Wang, X., Ni, M., Wang, F., Zhu, W., Luo, Z., and Cen, K.: A review on solar stills for brine desalination. Appl. Energy 103, 642 (2013).
21.Li, X., Lin, R., Ni, G., Xu, N., Hu, X., Zhu, B., Lv, G., Li, J., Zhu, S., and Zhu, J.: Three-dimensional artificial transpiration for efficient solar waste-water treatment. Natl. Sci. Rev. 5, 70 (2018).
22.Gao, M., Connor, P.K.N., and Ho, G.W.: Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy Environ. Sci. 9, 3151 (2016).
23.Wang, X., Ou, G., Wang, N., and Wu, H.: Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination. ACS Appl. Mater. Interfaces 8, 9194 (2016).
24.Ishii, S., Sugavaneshwar, R.P., Chen, K., Dao, T.D., and Nagao, T.: Solar water heating and vaporization with silicon nanoparticles at mie resonances. Opt. Mater. Express 6, 640 (2016).
25.Liu, Y., Lou, J., Ni, M., Song, C., Wu, J., Dasgupta, N.P., Tao, P., Shang, W., and Deng, T.: Bioinspired bifunctional membrane for efficient clean water generation. ACS Appl. Mater. Interfaces 8, 772 (2016).
26.Dong, S., Feng, J., Fan, M., Pi, Y., Hu, L., Han, X., Liu, M., Sun, J., and Sun, J.: Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: A review. RSC Adv. 5, 14610 (2015).
27.Fan, Y., Ma, W., Han, D., Gan, S., Dong, X., and Niu, L.: Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 27, 3767 (2015).
28.Li, H., Bian, Z., Zhu, J., Huo, Y., Li, H., and Lu, Y.: Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J. Am. Chem. Soc. 129, 4538 (2007).
29.Yan, W., Mahurin, S.M., Pan, Z., Overbury, S.H., and Dai, S.: Ultrastable Au nanocatalyst supported on surface-modified TiO2 nanocrystals. J. Am. Chem. Soc. 127, 10480 (2005).
30.Bian, Z., Tachikawa, T., Zhang, P., Fujitsuka, M., and Majima, T.: Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 136, 458 (2014).
31.Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., and Gernjak, W.: Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 147, 1 (2009).
32.Wang, X., He, Y., Cheng, G., Shi, L., Liu, X., and Zhu, J.: Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Convers. Manage. 130, 176 (2016).
33.Ni, G., Miljkovic, N., Ghasemi, H., Huang, X., Boriskina, S.V., Lin, C-T., Wang, J., Xu, Y., Rahman, M.M., Zhang, T., and Chen, G.: Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 17, 290 (2015).
34.Zhuang, S., Zhou, L., Xu, W., Xu, N., Hu, X., Li, X., Lv, G., Zheng, Q., Zhu, S., Wang, Z., and Zhu, J.: Tuning transpiration by interfacial solar absorber-leaf engineering. Adv. Sci. 5, 1700497 (2018).
35.Xu, N., Hu, X., Xu, W., Li, X., Zhou, L., Zhu, S., and Zhu, J.: Mushrooms as efficient solar steam-generation devices. Adv. Mater. 29, 1606762 (2017).
36.Li, X., Xu, W., Tang, M., Zhou, L., Zhu, B., Zhu, S., and Zhu, J.: Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. U. S. A. 113, 13953 (2016).
37.Xu, W., Hu, X., Zhuang, S., Wang, Y., Li, X., Zhou, L., Zhu, S., and Zhu, J.: Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 8, 1702884 (2018).
38.Shi, L., Wang, Y., Zhang, L., and Wang, P.: Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. J. Mater. Chem. A 5, 16212 (2017).
39.Wang, Y., Zhang, L., and Wang, P.: Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chem. Eng. 4, 1223 (2016).
40.Jiang, F., Liu, H., Li, Y., Kuang, Y., Xu, X., Chen, C., Huang, H., Jia, C., Zhao, X., Hitz, E., Zhou, Y., Yang, R., Cui, L., and Hu, L.: Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Appl. Mater. Interfaces 10, 1104 (2018).
41.Zhu, M., Li, Y., Chen, G., Jiang, F., Yang, Z., Luo, X., Wang, Y., Lacey, S.D., Dai, J., Wang, C., Jia, C., Wan, J., Yao, Y., Gong, A., Yang, B., Yu, Z., Das, S., and Hu, L.: Tree-inspired design for high-efficiency water extraction. Adv. Mater. 29, 1704107 (2017).
42.Liu, H., Chen, C., Chen, G., Kuang, Y., Zhao, X., Song, J., Jia, C., Xu, X., Hitz, E., Xie, H., Wang, S., Jiang, F., Li, T., Li, Y., Gong, A., Yang, R., Das, S., and Hu, L.: High-performance solar steam device with layered channels: Artificial tree with a reversed design. Adv. Energy Mater. 8, 1701616 (2018).
43.Li, T., Liu, H., Zhao, X., Chen, G., Dai, J., Pastel, G., Jia, C., Chen, C., Hitz, E., Siddhartha, D., Yang, R., and Hu, L.: Scalable and highly efficient mesoporous wood-based solar steam generation device: Localized heat, rapid water transport. Adv. Funct. Mater. 28, 1707134 (2018).
44.Xue, G., Liu, K., Chen, Q., Yang, P., Li, J., Ding, T., Duan, J., Qi, B., and Zhou, J.: Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl. Mater. Interfaces 9, 15052 (2017).
45.Guo, A., Fu, Y., Wang, G., and Wang, X.: Diameter effect of gold nanoparticles on photothermal conversion for solar steam generation. RSC Adv. 7, 4815 (2017).
46.Wang, H., Miao, L., and Tanemura, S.: Morphology control of Ag polyhedron nanoparticles for cost-effective and fast solar steam generation. Sol. RRL 1, 1600023 (2017).
47.Rahman, M.M., Younes, H., Ni, G., Lu, J.Y., Raza, A., Zhang, T.J., Fang, N.X., and Ghaferi, A.A.: Plasmonic nanofluids enhanced solar thermal transfer liquid. In American Institute of Physics Conference Series, Vol. 1850 (AIP Publishing LLC, 2017); p. 110013. Available at:
48.Amjad, M., Raza, G., Xin, Y., Pervaiz, S., Xu, J., Du, X., and Wen, D.: Volumetric solar heating and steam generation via gold nanofluids. Appl. Energy 206, 393 (2017).
49.Jin, H., Lin, G., Bai, L., Zeiny, A., and Wen, D.: Steam generation in a nanoparticle-based solar receiver. Nano Energy 28, 397 (2016).
50.Zhao, D., Duan, H., Yu, S., Zhang, Y., He, J., Quan, X., Tao, P., Shang, W., Wu, J., Song, C., and Deng, T.: Enhancing localized evaporation through separated light absorbing centers and scattering centers. Sci. Rep. 5, 17276 (2015).
51.Yu, S., Zhang, Y., Duan, H., Liu, Y., Quan, X., Tao, P., Shang, W., Wu, J., Song, C., and Deng, T.: The impact of surface chemistry on the performance of localized solar-driven evaporation system. Sci. Rep. 5, 13600 (2015).
52.Liu, Y., Yu, S., Feng, R., Bernard, A., Liu, Y., Zhang, Y., Duan, H., Shang, W., Tao, P., Song, C., and Deng, T.: A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27, 2768 (2015).
53.Wang, Z., Liu, Y., Tao, P., Shen, Q., Yi, N., Zhang, F., Liu, Q., Song, C., Zhang, D., Shang, W., and Deng, T.: Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small 10, 3234 (2014).
54.Zhu, M., Li, Y., Chen, F., Zhu, X., Dai, J., Li, Y., Yang, Z., Yan, X., Song, J., Wang, Y., Hitz, E., Luo, W., Lu, M., Yang, B., and Hu, L.: Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8, 1701028 (2018).
55.Chirumamilla, M., Chirumamilla, A., Yang, Y., Roberts, A.S., Kristensen, P.K., Chaudhuri, K., Boltasseva, A., Sutherland, D.S., Bozhevolnyi, S.I., and Pedersen, K.: Large‐area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars. Adv. Opt. Mater. 5, 1700552 (2017).
56.Li, W., Guler, U., Kinsey, N., Naik, G.V., Boltasseva, A., Guan, J., Shalaev, V.M., and Kildishev, A.V.: Plasmonics: Refractory plasmonics with titanium nitride: Broadband metamaterial absorber. Adv. Mater. 26, 7921 (2014).
57.Naik, G.V., Schroeder, J.L., Ni, X., Kildishev, A.V., Sands, T.D., and Boltasseva, A.: Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478 (2010).
58.Gao, Y., Yuan, Z., and Gao, S.: Semiclassical approach to plasmon–electron coupling and Landau damping of surface plasmons. J. Chem. Phys. 134, 134702 (2011).
59.Guler, U., Ndukaife, J.C., Naik, G.V., Nnanna, A.G., Kildishev, A.V., Shalaev, V.M., and Boltasseva, A.: Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles. Nano Lett. 13, 6078 (2013).
60.Naik, G.V., Shalaev, V.M., and Boltasseva, A.: Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 25, 3264 (2013).
61.Ishii, S., Sugavaneshwar, R.P., and Nagao, T.: Titanium nitride nanoparticles as plasmonic solar heat transducers. J. Phys. Chem. C 120, 2343 (2016).
62.Kaur, M., Ishii, S., Shinde, S.L., and Nagao, T.: All-ceramic microfibrous solar steam generator: TiN plasmonic nanoparticle-loaded transparent microfibers. ACS Sustainable Chem. Eng. 5, 8523 (2017).
63.Jaque, D., Martinez Maestro, L., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J.L., Martin Rodriguez, E., and Garcia Sole, J.: Nanoparticles for photothermal therapies. Nanoscale 6, 9494 (2014).
64.Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377 (1908).
65.Khlebtsov, B., Zharov, V., Melnikov, A., Tuchin, V., and Khlebtsov, N.: Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17, 5167 (2006).
66.Chen, H., Shao, L., Ming, T., Sun, Z., Zhao, C., Yang, B., and Wang, J.: Understanding the photothermal conversion efficiency of gold nanocrystals. Small 6, 2272 (2010).
67.Xia, Y.: Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 30, 338 (2005).
68.Jiang, K., Smith, D.A., and Pinchuk, A.: Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J. Phys. Chem. C 117, 27073 (2013).
69.Njoki, P.N., Lim, I.S., Mott, D., Park, H-Y., Khan, B., Mishra, S., Sujakumar, R., Luo, J., and Zhong, C.J.: Size correlation of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. C 111, 14664 (2007).
70.Wang, J., Li, Y., Deng, L., Wei, N., Weng, Y., Dong, S., Qi, D., Qiu, J., Chen, X., and Wu, T.: High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 29, 1603730 (2017).
71.Guler, U., Kildishev, A., Boltasseva, A., and Shalaev, V.M.: Titanium nitride nanoparticles for therapeutic applications. In Lasers and Electro-optics (IEEE, 2014); p. 1. Available at:
72.Hogan, N.J., Urban, A.S., Ayala-Orozco, C., Pimpinelli, A., Nordlander, P., and Halas, N.J.: Nanoparticles heat through light localization. Nano Lett. 14, 4640 (2014).
73.Govorov, A.O. and Richardson, H.H.: Generating heat with metal nanoparticles. Nano Today 2, 30 (2007).
74.Fu, Y., Mei, T., Wang, G., Guo, A., Dai, G., Wang, S., Wang, J., Li, J., and Wang, X.: Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids. Appl. Therm. Eng. 114, 961 (2017).
75.Ma, B. and Banerjee, D.: A review of nanofluid synthesis. In Advances in Nanomaterials, Balasubramanian, G., ed. (Springer, Cham, 2018); pp. 135176.
76.Wang, Y., Wang, C., Song, X., Megarajan, S.K., and Jiang, H.: A facile nanocomposite strategy to fabricate a rGO–MWCNT photothermal layer for efficient water evaporation. J. Mater. Chem. A 6, 963971 (2017).
77.Yu, L., Ruan, S., Xu, X., Zou, R., and Hu, J.: One-dimensional nanomaterial-assembled macroscopic membranes for water treatment. Nano Today 17, 79 (2017).
78.Li, J., Jia, H., Lin, J., Luo, H., Liu, Z., Xu, X., Huang, Y., Jin, P., Zhang, J., and Abbas, S.: Free-standing membranes made of activated boron nitride for efficient water cleaning. RSC Adv. 5, 71537 (2015).
79.Wang, X., He, Y., Liu, X., and Zhu, J.: Enhanced direct steam generation via a bio-inspired solar heating method using carbon nanotube films. Powder Technol. 321, 276 (2017).
80.Guo, Z., Ming, X., Wang, G., Hou, B., Liu, X., Mei, T., Li, J., Wang, J., and Wang, X.: Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination. Semicond. Sci. Technol. 33, 025008 (2018).
81.Kelf, T.A., Sugawara, Y., Cole, R.M., Baumberg, J.J., Abdelsalam, M.E., Cintra, S., Mahajan, S., Russell, A.E., and Bartlett, P.N.: Localized and delocalized plasmons in metallic nanovoids. Phys. Rev. B 74, 245415 (2006).
82.Batchelor, G.K.: An introduction to fluid dynamics. Int. J. Heat Mass Transfer 11, 1213 (1968).
83.Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.M., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., and Unger, K.K.: Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 66, 1739 (2009).
84.Liu, K.K., Jiang, Q., Tadepalli, S., Raliya, R., Biswas, P., Naik, R.R., and Singamaneni, S.: Wood-Graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl. Mater. Interfaces 9, 7675 (2017).
85.Jiang, Q. and Singamaneni, S.: Water from wood: Pouring through pores. Joule 1, 429 (2017).
86.Jia, C., Li, Y., Yang, Z., Chen, G., Yao, Y., Jiang, F., Kuang, Y., Pastel, G., Xie, H., Yang, B., Das, S., and Hu, L.: Rich mesostructures derived from natural woods for solar steam generation. Joule 1, 588 (2017).
87.Fang, J., Liu, Q., Zhang, W., Gu, J., Su, Y., Su, H., Guo, C., and Zhang, D.: Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. J. Mater. Chem. A 5, 17817 (2017).
88.Wang, G., Fu, Y., Guo, A., Mei, T., Wang, J., Li, J., and Wang, X.: Reduced graphene oxide–polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation. Chem. Mater. 29, 5629 (2017).
89.Ma, S., Chiu, C.P., Zhu, Y., Tang, C.Y., Long, H., Qarony, W., Zhao, X., Zhang, X., Lo, W.H., and Tsang, Y.H.: Recycled waste black polyurethane sponges for solar vapor generation and distillation. Appl. Energy 206, 63 (2017).
90.Li, R., Zhang, L., Shi, L., and Wang, P.: MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 11, 3752 (2017).


Type Description Title
Supplementary materials

Bian et al. supplementary material
Bian et al. supplementary material 1

 Word (4.8 MB)
4.8 MB

Highly efficient solar steam generation by hybrid plasmonic structured TiN/mesoporous anodized alumina membrane

  • Yue Bian (a1), Kun Tang (a1), Zhonghua Xu (a1), Jingrui Ma (a1), Yang Shen (a1), Licai Hao (a1), Xuanhu Chen (a1), Kuiying Nie (a1), Jing Li (a1), Tongchuan Ma (a1), Shunming Zhu (a1), Jiandong Ye (a1), Xiang Xiong (a2), Yi Yang (a1), Rong Zhang (a1), Youdou Zheng (a1) and Shulin Gu (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed