Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-20T14:03:54.777Z Has data issue: false hasContentIssue false

Highly conducting transparent thin films based on zinc oxide

Published online by Cambridge University Press:  31 January 2011

Ruiping Wang*
Affiliation:
Department of Chemistry, Oregon State University, Corvallis, Oregon 97331–4003
Laura L. H. King*
Affiliation:
Department of Chemistry, Oregon State University, Corvallis, Oregon 97331–4003
Arthur W. Sleight
Affiliation:
Department of Chemistry, Oregon State University, Corvallis, Oregon 97331–4003
*
(a) Applied Materials, 3100 Bowers Avenue, Mail Stop 0225, Santa Clara, California 95054.
(b) Conductus, 969 West Maude Avenue, Sunnyvale, California 94086.
Get access

Abstract

Doped zinc oxide thin films were prepared by rf magnetron sputtering using the dopants Al, Ga, In, and Ge. The best results were obtained with Al and Ga doping where room temperature conductivities were as high as 1600 and 1800 ohm-1 cm-1, respectively. Hall measurements were performed at 77 K and 298 K. The Hall mobility as in the range of 9 to 22 cm2/Vs, and there was generally very little temperature dependence of the mobility or conductivity. Cation doping levels were as high as 10 at. %, but the conductivities did not increase beyond 3 at. % doping level. For films with high conductivity, electron carrier concentrations from Hall measurements were significantly lower than the concentrations of dopants. Optical measurements on the films showed that the average transmittance though the visible range is higher than 85%. The measurements also indicated a blueshift of the absorption edge with doping.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Minami, T., Sato, H., Nanto, H., and Takata, S., Jpn. J. Appl. Phys. 24, 10 (1985).CrossRefGoogle Scholar
2.Minami, T., Sato, H., Nanto, H., and Takato, S., Jpn. J. Appl. Phys. 25, 9 (1986).Google Scholar
3.Jin, Z-C., Hamberg, I., and Granqvist, C. G., Appl. Phys. Lett. 51, 3 (1987).Google Scholar
4.Minami, T., Nanto, H., and Takato, S., Jpn. J. Appl. Phys. 23, 5 (1984).Google Scholar
5.Schropp, R. E. I. and Madan, A., J. Appl. Phys. 66, 5 (1989).Google Scholar
6.Minami, T., Sato, H., Ohashi, K., Tomofuji, T., and Takata, S., J. Cryst. Growth 117, 370374 (1992).CrossRefGoogle Scholar
7.Kobayashi, K., Maeda, T., Matsushima, S., and Okada, G., J. Mater. Sci. 27, 5953 (1992).CrossRefGoogle Scholar
8.Konishi, R., Noda, K., Harada, H., and Sasakura, H., J. Cryst. Growth 117, 939 (1992).CrossRefGoogle Scholar
9.Brett, M. J., Parsons, R. R., and Baltes, H. P., Appl. Opt. 25, 16 (1986).CrossRefGoogle Scholar
10.Minami, T., Nanto, H., and Takata, S., Jpn. J. Appl. Phys. 24, 8 (1985).CrossRefGoogle Scholar
11.Sarkar, A., Ghosh, S., Chaudhuri, S., and Pal, A. K., Thin Solid Films 204, 255 (1981).CrossRefGoogle Scholar
12.Roth, A. P., Webb, J. B., and Williams, D. F., Phys. Rev. 25, 12 (1982).Google Scholar
13.Wenas, W.W., Yamada, A., Konagai, M., and Takahashi, K., Jpn. J. Appl. Phys. 30, 3B (1991).CrossRefGoogle Scholar
14.Roth, A. P., Webb, J. B., and Williams, D. F., Solid State Commun. 39, 1269 (1981).CrossRefGoogle Scholar
15.Noritake, F., Yamamoto, N., and Horiguchi, Y., J. Am. Ceram. Soc. 74, 1 (1991).Google Scholar
16.Tiburcio-Silver, A., Joubert, J. C., and Laveau, M., Thin Solid Films 197, 195 (1991).CrossRefGoogle Scholar
17.Choi, B. H. and Im, H. B., J. Am. Ceram. Soc. 73, 1347 (1990).CrossRefGoogle Scholar
18.Goyal, D. J., Agashe, C., Takwale, M. G., Bhide, V., Mahamuni, S., and Kulkarni, S. K., J. Mater. Res. 8, 1052 (1993).CrossRefGoogle Scholar
19.Wang, R., Sleight, A. W., and Cleary, D., Chem. Mater. 8, 433 (1996).CrossRefGoogle Scholar
20.Wang, R. and Sleight, A. W., unpublished.Google Scholar
21.Hamberg, I. and Granqvist, C. G., Phys. Rev. B 30 (6), 32403249 (1984).CrossRefGoogle Scholar
22.Dietz, R. E., Hopfield, J.J., and Thomas, D. G., J. Appl. Phys. 32, 2282 (1961).CrossRefGoogle Scholar
23.Wolff, P. A., Phys. Rev. 126, 405 (1962).CrossRefGoogle Scholar
24.Auvergne, D., Camassel, J., and Mathieu, H., Phys. Rev. B 11 (6), 22512259 (1975).Google Scholar
25.Berggren, K. F. and Sernelius, B. E., Phys. Rev. B 24 (4), 19711986 (1981).Google Scholar
26.Abram, R. A., Rees, G. J., and Wilson, B. L. H., Adv. Phys. 27, 799 (1978).Google Scholar