Skip to main content Accessibility help
×
Home

High-entropy alloys by mechanical alloying: A review

  • Mayur Vaidya (a1), Garlapati Mohan Muralikrishna (a1) and Budaraju Srinivasa Murty (a1)

Abstract

Mechanical alloying (MA) followed by sintering has been one of the most widely adopted routes to produce nanocrystalline high-entropy alloys (HEAs). Enhanced solid solubility, room temperature processing, and homogenous alloy formation are the key benefits provided by MA. Spark plasma sintering has largely been used to obtain high-density HEA pellets from milled powders. However, there are many challenges associated with the production of HEAs using MA, which include contamination during milling and high propensity of oxidation. The present review provides a comprehensive understanding of various HEAs produced by MA so far, with the aim to bring out the governing aspects of phase evolution, thermal stability, and properties achieved. The limitations and challenges of the process are also critically assessed with a possible way forward. The paper also compares the results obtained from high-pressure torsion, another severe plastic deformation technique.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: murty@iitm.ac.in

Footnotes

Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes

References

Hide All
1.Murty, B.S., Yeh, J.W., and Ranganathan, S.: High-Entropy Alloys (Butterworth-Heinemann, London, UK, 2014).
2.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).
3.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
4.Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).
5.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).
6.Yang, M., Liu, X.J., Ruan, H.H., Wu, Y., Wang, H., and Lu, Z.P.: High thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses. J. Appl. Phys. 119, 245112 (2016).
7.Butler, T.M., Alfano, J.P., Martens, R.L., and Weaver, M.L.: High-temperature oxidation behavior of Al–Co–Cr–Ni–(Fe or Si) multicomponent high-entropy alloys. JOM 67, 246 (2015).
8.Laplanche, G., Volkert, U.F., Eggeler, G., and George, E.P.: Oxidation behavior of the CrMnFeCoNi high-entropy alloy. Oxid. Met. 85, 629 (2016).
9.Zhao, J.H., Ji, X.L., Shan, Y.P., Fu, Y., and Yao, Z.: On the microstructure and erosion–corrosion resistance of AlCrFeCoNiCu high-entropy alloy via annealing treatment. Mater. Sci. Technol. 32, 1271 (2016).
10.Schuh, B., Mendez-Martin, F., Völker, B., George, E.P., Clemens, H., Pippan, R., and Hohenwarter, A.: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258 (2015).
11.Zhang, Y., Zuo, T., Cheng, Y., and Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1 (2013).
12.Praveen, S., Basu, J., Kashyap, S., and Kottada, R.S.: Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J. Alloys Compd. 662, 361 (2016).
13.Murty, B.S. and Ranganathan, S.: Novel materials synthesis by mechanical alloying/milling. Int. Mater. Rev. 43, 101 (1998).
14.Benjamin, J.S. and Volin, T.E.: The mechanism of mechanical alloying. Metall. Trans. 5, 1929 (1974).
15.Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).
16.Ang, A.S.M., Berndt, C.C., Sesso, M.L., Anupam, A., Praveen, S., Kottada, R.S., and Murty, B.S.: Plasma-sprayed high entropy alloys: Microstructure and properties of AlCoCrFeNi and MnCoCrFeNi. Metall. Mater. Trans. A 46, 791 (2014).
17.Varalakshmi, S., Kamaraj, M., and Murty, B.S.: Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J. Alloys Compd. 460, 253 (2008).
18.Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).
19.MacDonald, B.E., Fu, Z., Zheng, B., Chen, W., Lin, Y., Chen, F., Zhang, L., Ivanisenko, J., Zhou, Y., Hahn, H., and Lavernia, E.J.: Recent progress in high entropy alloy research. JOM 69, 2024 (2017).
20.Shi, Y., Yang, B., and Liaw, P.: Corrosion-resistant high-entropy alloys: A review. Metals 7, 43 (2017).
21.Guruvidyathri, K., Hari Kumar, K.C., Yeh, J.W., and Murty, B.S.: Topologically close-packed phase formation in high entropy alloys: A review of calphad and experimental results. JOM 69, 2113 (2017).
22.Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).
23.Sharma, A.S., Yadav, S., Biswas, K., and Basu, B.: High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement. Mater. Sci. Eng., R 131, 1 (2018).
24.Koch, C.C.: Nanocrystalline high-entropy alloys. J. Mater. Res. 32, 3435 (2017).
25.Gómez-Esparza, C.D., Baldenebro-López, F., González-Rodelas, L., Baldenebro-López, J., and Martínez-Sánchez, R.: Series of nanocrystalline NiCoAlFe(Cr, Cu, Mo, Ti) high-entropy alloys produced by mechanical alloying. Mater. Res. 19, 39 (2016).
26.Sun, C., Li, P., Xi, S., Zhou, Y., Li, S., and Yang, X.: A new type of high entropy alloy composite Fe18Ni23Co25Cr21Mo8WNb3C2 prepared by mechanical alloying and hot pressing sintering. Mater. Sci. Eng., A 728, 144 (2018).
27.Rogal, Ł., Kalita, D., Tarasek, A., Bobrowski, P., and Czerwinski, F.: Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy. J. Alloys Compd. 708, 344 (2017).
28.Zaddach, A.J., Niu, C., Oni, A.A., Fan, M., LeBeau, J.M., Irving, D.L., and Koch, C.C.: Structure and magnetic properties of a multi-principal element Ni–Fe–Cr–Co–Zn–Mn alloy. Intermetallics 68, 107 (2016).
29.Fu, Z., Chen, W., Fang, S., and Li, X.: Effect of Cr addition on the alloying behavior, microstructure and mechanical properties of twinned CoFeNiAl0.5Ti0.5 alloy. Mater. Sci. Eng., A 597, 204 (2014).
30.Moravcik, I., Cizek, J., Gavendova, P., Sheikh, S., Guo, S., and Dlouhy, I.: Effect of heat treatment on microstructure and mechanical properties of spark plasma sintered AlCoCrFeNiTi0.5 high entropy alloy. Mater. Lett. 174, 53 (2016).
31.Wu, B., Chen, W., Jiang, Z., Chen, Z., and Fu, Z.: Influence of Ti addition on microstructure and mechanical behavior of a FCC-based Fe30Ni30Co30Mn10 alloy. Mater. Sci. Eng., A 676, 492 (2016).
32.Dwivedi, A., Koch, C.C., and Rajulapati, K.V.: On the single phase fcc solid solution in nanocrystalline Cr–Nb–Ti–V–Zn high-entropy alloy. Mater. Lett. 183, 44 (2016).
33.Zhang, S., Sun, Y., Ke, B., Li, Y., Ji, W., Wang, W., and Fu, Z.: Preparation and characterization of TiB2-(supra-nano-dual-phase) high-entropy alloy cermet by spark plasma sintering. Metals 8, 58 (2018).
34.Kang, B., Lee, J., Ryu, H.J., and Hong, S.H.: Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process. Mater. Sci. Eng., A 712, 616 (2018).
35.Ge, W., Wu, B., Wang, S., Xu, S., Shang, C., Zhang, Z., and Wang, Y.: Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sintering. Adv. Powder Technol. 28, 2556 (2017).
36.Fu, Z., Chen, W., Jiang, Z., MacDonald, B.E., Lin, Y., Chen, F., Zhang, L., and Lavernia, E.J.: Influence of Cr removal on the microstructure and mechanical behaviour of a high-entropy Al0.8Ti0.2CoNiFeCr alloy fabricated by powder metallurgy. Powder Metall. 5899, 1 (2018).
37.Salemi, F., Abbasi, M.H., and Karimzadeh, F.: Synthesis and thermodynamic analysis of nanostructured CuNiCoZnAl high entropy alloy produced by mechanical alloying. J. Alloys Compd. 685, 278 (2016).
38.Tan, X.R., Zhang, G.P., Zhi, Q., and Liu, Z.X.: Effects of milling on the microstructure and hardness of Al2NbTi3V2Zr high-entropy alloy. Mater. Des. 109, 27 (2016).
39.Vaidya, M., Karati, A., Marshal, A., Pradeep, K.G., and Murty, B.S.: Phase evolution and stability of nanocrystalline CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloys Compd. 770, 1004 (2019).
40.Ji, W., Wang, W., Wang, H., Zhang, J., Wang, Y., Zhang, F., and Fu, Z.: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56, 24 (2014).
41.Xu, J., Zhao, Z.F., and Wang, Y.: Effect of annealing treatment on the microstructure and magnetic properties of FeSiBAlNi(C, Ce) high entropy alloys. Mater. Sci. Forum 849, 52 (2016).
42.Wang, H.L., Gao, T.X., Niu, J.Z., Shi, P.J., Xu, J., and Wang, Y.: Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering. Int. J. Miner., Metall. Mater. 23, 77 (2016).
43.Colombini, E., Rosa, R., Trombi, L., Zadra, M., Casagrande, A., and Veronesi, P.: High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating. Mater. Chem. Phys. 210, 78 (2018).
44.Prasad, H., Singh, S., and Panigrahi, B.B.: Mechanical activated synthesis of alumina dispersed FeNiCoCrAlMn high entropy alloy. J. Alloys Compd. 692, 720 (2017).
45.Kang, B., Lee, J., Ryu, H.J., and Hong, S.H.: Microstructure, mechanical property and Hall–Petch relationship of a light-weight refractory Al0.1CrNbVMo high entropy alloy fabricated by powder metallurgical process. J. Alloys Compd. 767, 1012 (2018).
46.Kumar, N., Tiwary, C.S., and Biswas, K.: Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots. J. Mater. Sci. 53, 13411 (2018).
47.Varalakshmi, S., Kamaraj, M., and Murty, B.S.: Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying. Metall. Mater. Trans. A 41, 2703 (2010).
48.Vaidya, M., Prasad, A., Parakh, A., and Murty, B.S.: Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying. Mater. Des. 126, 37 (2017).
49.Xie, Y., Cheng, H., Tang, Q., Chen, W., Chen, W., and Dai, P.: Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics 93, 228 (2018).
50.Cheng, H., Chen, W., Liu, X., Tang, Q., Xie, Y., and Dai, P.: Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy. Mater. Sci. Eng., A 719, 192 (2018).
51.Varalakshmi, S., Kamaraj, M., and Murty, B.S.: Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater. Sci. Eng., A 527, 1027 (2010).
52.Fu, Z., Chen, W., Chen, Z., Wen, H., and Lavernia, E.J.: Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy. Mater. Sci. Eng., A 619, 137 (2014).
53.Shivam, V., Basu, J., Shadangi, Y., Singh, M.K., and Mukhopadhyay, N.K.K.: Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy. J. Alloys Compd. 757, 87 (2018).
54.Varalakshmi, S., Appa Rao, G., Kamaraj, M., and Murty, B.S.: Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying. J. Mater. Sci. 45, 5158 (2010).
55.Omori, M.: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 287, 183 (2000).
56.Murali, M., Kumaresh Babu, S.P., Majhi, J., Vallimanalan, A., and Mahendran, R.: Processing and characterisation of nano crystalline AlCoCrCuFeTix high-entropy alloy. Powder Metall. 61, 139 (2018).
57.Praveen, S., Murty, B.S., and Kottada, R.S.: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng., A 534, 83 (2012).
58.Joo, S-H., Kato, H., Jang, M.J., Moon, J., Kim, E.B., Hong, S-J., and Kim, H.S.: Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering. J. Alloys Compd. 698, 591 (2017).
59.Wang, P., Cai, H., and Cheng, X.: Effect of Ni/Cr ratio on phase, microstructure and mechanical properties of NixCoCuFeCr2−x (x = 1.0, 1.2, 1.5, 1.8 mol) high entropy alloys. J. Alloys Compd. 662, 20 (2016).
60.Vaidya, M., Pradeep, K.G., Murty, B.S., Wilde, G., and Divinski, S.V.: Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys. Sci. Rep. 7, 1 (2017).
61.Praveen, S., Murty, B.S., and Kottada, R.S.: Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering. JOM 65, 1797 (2013).
62.Praveen, S., Anupam, A., Sirasani, T., Murty, B.S., and Kottada, R.S.: Characterization of oxide dispersed AlCoCrFe high entropy alloy synthesized by mechanical alloying and spark plasma sintering. Trans. Indian Inst. Met. 66, 369 (2013).
63.Mane, R.B., Rajkumar, Y., and Panigrahi, B.B.: Sintering mechanism of CoCrFeMnNi high-entropy alloy powders. Powder Metall. 61, 131 (2018).
64.Mane, R.B. and Panigrahi, B.B.: Sintering mechanisms of mechanically alloyed CoCrFeNi high-entropy alloy powders. J. Mater. Res. 33, 3321 (2018).
65.Mane, R.B. and Panigrahi, B.B.: Comparative study on sintering kinetics of as-milled and annealed CoCrFeNi high entropy alloy powders. Mater. Chem. Phys. 210, 49 (2018).
66.Mane, R.B. and Panigrahi, B.B.: Effect of alloying order on non-isothermal sintering kinetics of mechanically alloyed high entropy alloy powders. Mater. Lett. 217, 131 (2018).
67.Colombini, E., Lassinantti Gualtieri, M., Rosa, R., Tarterini, F., Zadra, M., Casagrande, A., and Veronesi, P.: SPS-assisted synthesis of SICp reinforced high entropy alloys: Reactivity of SIC and effects of pre-mechanical alloying and post-annealing treatment. Powder Metall. 61, 64 (2018).
68.Liu, Z., Lei, Y., Gray, C., and Wang, G.: Examination of solid-solution phase formation rules for high entropy alloys from atomistic Monte Carlo simulations. JOM 67, 2364 (2015).
69.Zhang, Y. and Zhou, Y.J.: Solid solution formation criteria for high entropy alloys. Mater. Sci. Forum 561–565, 1337 (2007).
70.Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).
71.Kumar, A., Dhekne, P., Swarnakar, A.K., and Chopkar, M.K.: Analysis of Si addition on phase formation in AlCoCrCuFeNiSix high entropy alloys. Mater. Lett. 188, 73 (2017).
72.Mohanty, S., Maity, T.N., Mukhopadhyay, S., Sarkar, S., Gurao, N.P., Bhowmick, S., and Biswas, K.: Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng., A 679, 299 (2017).
73.Zhang, M., Zhang, W., Liu, Y., Liu, B., and Wang, J.: FeCoCrNiMo high-entropy alloys prepared by powder metallurgy processing for diamond tool applications. Powder Metall. 61, 123 (2018).
74.Zhang, Y., Zhang, B., Li, K., Zhao, G.L., and Guo, S.M.: Electromagnetic interference shielding effectiveness of high entropy AlCoCrFeNi alloy powder laden composites. J. Alloys Compd. 734, 220 (2018).
75.Chen, J., Niu, P., Wei, T., Hao, L., Liu, Y., Wang, X., and Peng, Y.: Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites. J. Alloys Compd. 649, 630 (2015).
76.Shivam, V., Basu, J., Shadangi, Y., Singh, M.K., and Mukhoupadhyay, N.K.: Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy. J. Alloys Compd. 757, 20 (2016).
77.Praveen, S., Anupam, A., Tilak, R., and Kottada, R.S.: Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media. Mater. Chem. Phys. 210, 57 (2018).
78.Pohan, R.M., Gwalani, B., Lee, J., Alam, T., Hwang, J.Y., Ryu, H.J., Banerjee, R., and Hong, S.H.: Microstructures and mechanical properties of mechanically alloyed and spark plasma sintered Al0.3CoCrFeMnNi high entropy alloy. Mater. Chem. Phys. 210, 62 (2018).
79.Vaidya, M., Armugam, S., Kashyap, S., and Murty, B.S.S.: Amorphization in equiatomic high entropy alloys. J. Non-Cryst. Solids 413, 8 (2015).
80.Fu, Z., Chen, W., Wen, H., Zhang, D., Chen, Z., Zheng, B., Zhou, Y., and Lavernia, E.J.: Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107, 59 (2016).
81.Tian, L.H., Xiong, W., Liu, C., Lu, S., and Fu, M.: Microstructure and wear behavior of atmospheric plasma-sprayed AlCoCrFeNiTi high-entropy alloy coating. J. Mater. Eng. Perform. 25, 5513 (2016).
82.Ji, W., Zhang, J., Wang, W., Wang, H., Zhang, F., Wang, Y., and Fu, Z.: Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid. J. Eur. Ceram. Soc. 35, 879 (2014).
83.Hadraba, H., Chlup, Z., Dlouhy, A., Dobes, F., Roupcova, P., Vilemova, M., and Matejicek, J.: Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy. Mater. Sci. Eng., A 689, 252 (2017).
84.Liu, Y., Wang, J., Fang, Q., Liu, B., Wu, Y., and Chen, S.: Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder. Intermetallics 68, 16 (2016).
85.Murali, M., Babu, S.P.K., Krishna, B.J., and Vallimanalan, A.: Synthesis and characterization of AlCoCrCuFeZnx high-entropy alloy by mechanical alloying. Prog. Nat. Sci.: Mater. Int. 26, 380 (2016).
86.Mohanty, S., Gurao, N.P., and Biswas, K.: Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying. Mater. Sci. Eng., A 617, 211 (2014).
87.Yurkova, A.I., Chernyavskii, V.V., and Gorban, V.F.: Structure and mechanical properties of high-entropy AlCuNiFeTi and AlCuNiFeCr alloys produced by mechanical activation followed by pressure sintering. Powder Metall. Met. Ceram. 55, 152 (2016).
88.Zhao, R.F., Ren, B., Zhang, G.P., Liu, Z.X., and jian Zhang, J.: Effect of Co content on the phase transition and magnetic properties of CoxCrCuFeMnNi high-entropy alloy powders. J. Magn. Magn. Mater. 468, 14 (2018).
89.Tong, Y., Qi, P., Liang, X., Chen, Y., Hu, Y., and Hu, Z.: Different-shaped ultrafine MoNbTaW HEA powders prepared via mechanical alloying. Materials 10, 1 (2018).
90.Kumar, A., Swarnakar, A.K.A.K., and Chopkar, M.: Phase evolution and mechanical properties of AlCoCrFeNiSix high-entropy alloys synthesized by mechanical alloying and spark plasma sintering. J. Mater. Eng. Perform. 27, 3304 (2018).
91.Cheng, H., Liu, X., Tang, Q., Wang, W., Yan, X., and Dai, P.: Microstructure and mechanical properties of FeCoCrNiMnAlx high-entropy alloys prepared by mechanical alloying and hot-pressed sintering. J. Alloys Compd. 775, 742 (2019).
92.Guo, W., Liu, B., Liu, Y., Li, T., Fu, A., Fang, Q., and Nie, Y.: Microstructures and mechanical properties of ductile NbTaTiV refractory high entropy alloy prepared by powder metallurgy. J. Alloys Compd. 776, 428 (2019).
93.Oleszak, D., Antolak-Dudka, A., and Kulik, T.: High entropy multicomponent WMoNbZrV alloy processed by mechanical alloying. Mater. Lett. 232, 160 (2018).
94.Shivam, V., Basu, J., Pandey, V.K., Shadangi, Y., and Mukhopadhyay, N.K.: Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Adv. Powder Technol. 29, 2221 (2018).
95.Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., and Koch, C.C.: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 95 (2014).
96.Yang, Q., Tang, Y., Wen, Y., Zhang, Q., Deng, D., and Nai, X.: Microstructures and properties of CoCrCuFeNiMox high-entropy alloys fabricated by mechanical alloying and spark plasma sintering. Powder Metall. 61, 115 (2018).
97.Tian, L., Fu, M., and Xiong, W.: Microstructural evolution of AlCoCrFeNiSi high-entropy alloy powder during mechanical alloying and its coating performance. Materials 11, 320 (2018).
98.Long, Y., Su, K., Zhang, J., Liang, X., Peng, H., and Li, X.: Enhanced strength of a mechanical alloyed NbMoTaWVTi refractory high entropy alloy. Materials 11, 1 (2018).
99.Kumar, D., Maulik, O., Kumar, S., Prasad, Y.V.S.S., and Kumar, V.: Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering. Mater. Chem. Phys. 210, 71 (2018).
100.Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Wang, W.M., Lee, S.W., and Niihara, K.: Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J. Alloys Compd. 495, 33 (2010).
101.Praveen, S., Murty, B.S., and Kottada, R.S.: Effect of molybdenum and niobium on the phase formation and hardness of nanocrystalline CoCrFeNi high entropy alloys. J. Nanosci. Nanotechnol. 14, 8106 (2014).
102.Yuhu, F., Yunpeng, Z., Hongyan, G., Huimin, S., and Li, H.: AlNiCrFexMo0.2CoCu high entropy alloys prepared by powder metallurgy. Rare Met. Mater. Eng. 42, 1127 (2013).
103.Fu, Z.Q., Chen, W.P., Fang, S.C., Zhang, D.Y., Xiao, H.Q., and Zhu, D.Z.: Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J. Alloys Compd. 553, 316 (2013).
104.Fu, Z., Chen, W., Xiao, H., Zhou, L., Zhu, D., and Yang, S.: Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique. Mater. Des. 44, 535 (2013).
105.Kumar, D., Maulik, O., Bagri, A.S., Prasad, Y.V.S.S., and Kumar, V.: Microstructure and characterization of mechanically alloyed equiatomic AlCuCrFeMnW high entropy alloy. Mater. Today: Proc. 3, 2926 (2016).
106.Koundinya, N.T.B.N., Sajith Babu, C., Sivaprasad, K., Susila, P., Kishore Babu, N., and Baburao, J.: Phase evolution and thermal analysis of nanocrystalline AlCrCuFeNiZn high entropy alloy produced by mechanical alloying. J. Mater. Eng. Perform. 22, 3077 (2013).
107.Mridha, S., Samal, S., Khan, P.Y., Biswas, K., and Govind, : Processing and consolidation of nanocrystalline Cu–Zn–Ti–Fe–Cr high-entropy alloys via mechanical alloying. Metall. Mater. Trans. A 44, 4532 (2013).
108.Tariq, N.H., Naeem, M., Hasan, B.A., Akhter, J.I., and Siddique, M.: Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J. Alloys Compd. 556, 79 (2013).
109.Průša, F., Šenková, A., Kučera, V., Čapek, J., and Vojtěch, D.: Properties of a high-strength ultrafine-grained CoCrFeNiMn high-entropy alloy prepared by short-term mechanical alloying and spark plasma sintering. Mater. Sci. Eng., A 734, 341 (2018).
110.Fang, S., Chen, W., and Fu, Z.: Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater. Des. 54, 973 (2014).
111.Wang, C., Ji, W., and Fu, Z.: Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Adv. Powder Technol. 25, 1334 (2014).
112.Fu, Z., Chen, W., Wen, H., Chen, Z., and Lavernia, E.J.: Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy. J. Alloys Compd. 646, 175 (2015).
113.Chen, Z., Chen, W., Wu, B., Cao, X., Liu, L., and Fu, Z.: Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng., A 648, 217 (2015).
114.Baldenebro-Lopez, F.J., Herrera-Ramírez, J.M., Arredondo-Rea, S.P., Gómez-Esparza, C.D., and Martínez-Sánchez, R.: Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy. J. Alloys Compd. 643, S250 (2015).
115.Fu, Z., Chen, W., Wen, H., Morgan, S., Chen, F., Zheng, B., Zhou, Y., Zhang, L., and Lavernia, E.J.: Microstructure and mechanical behavior of a novel Co20Ni20Fe20Al20Ti20 alloy fabricated by mechanical alloying and spark plasma sintering. Mater. Sci. Eng., A 644, 10 (2015).
116.Khanchandani, H., Sharma, P., Kumar, R., Maulik, O., and Kumar, V.: Effect of sintering on phase evolution in AlMgFeCuCrNi4.75 high entropy alloy. Adv. Powder Technol. 27, 289 (2016).
117.Moravcik, I., Cizek, J., Zapletal, J., Kovacova, Z., Vesely, J., Minarik, P., Kitzmantel, M., Neubauer, E., and Dlouhy, I.: Microstructure and mechanical properties of Ni1.5Co1.5CrFeTi0.5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering. Mater. Des. 119, 141 (2017).
118.Yu, P.F., Zhang, L.J., Cheng, H., Zhang, H., Ma, M.Z., Li, Y.C., Li, G., Liaw, P.K., and Liu, R.P.: The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics 70, 82 (2016).
119.Wang, P., Cai, H., Zhou, S., and Xu, L.: Processing, microstructure and properties of Ni1.5CoCuFeCr0.5−xVx high entropy alloys with carbon introduced from process control agent. J. Alloys Compd. 695, 462 (2017).
120.Shang, C., Axinte, E., Sun, J., Li, X., Li, P., Du, J., Qiao, P., and Wang, Y.: CoCrFeNi(W1−xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering. Mater. Des. 117, 193 (2017).
121.Maulik, O., Kumar, D., Kumar, S., Fabijanic, D.M., and Kumar, V.: Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics 77, 46 (2016).
122.Maulik, O. and Kumar, V.: Synthesis of AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Mater. Charact. 110, 116 (2015).
123.Zhang, B., Duan, Y., Cui, Y., Ma, G., Wang, T., and Dong, X.: A new mechanism for improving electromagnetic properties based on tunable crystallographic powders. RSC Adv. 8, 14936 (2018).
124.Moravcik, I., Gouvea, L., Hornik, V., Kovacova, Z., Kitzmantel, M., Neubauer, E., and Dlouhy, I.: Synergic strengthening by oxide and coherent precipitate dispersions in high-entropy alloy prepared by powder metallurgy. Scr. Mater. 157, 24 (2018).
125.Alijani, F., Reihanian, M., and Gheisari, K.: Study on phase formation in magnetic FeCoNiMnV high entropy alloy produced by mechanical alloying. J. Alloys Compd. 773, 623 (2019).
126.Nam, S., Kim, M.J., Hwang, J.Y., and Choi, H.: Strengthening of Al0.15CoCrCuFeNiTix–C (x = 0, 1, 2) high-entropy alloys by grain refinement and using nanoscale carbides via powder metallurgical route. J. Alloys Compd. 762, 29 (2018).
127.Yadav, S., Sarkar, S., Aggarwal, A., Kumar, A., and Biswas, K.: Wear and mechanical properties of novel (CuCrFeTiZn)100−xPbx high entropy alloy composite via mechanical alloying and spark plasma sintering. Wear 410–411, 93 (2018).
128.Zhang, B., Duan, Y., Cui, Y., Ma, G., Wang, T., and Dong, X.: Improving electromagnetic properties of FeCoNiSi0.4Al0.4 high entropy alloy powders via their tunable aspect ratio and elemental uniformity. Mater. Des. 149, 173 (2018).
129.Baker, H. and Okamoto, H.: ASM Handbook: Alloy Phase Diagrams, Vol. 3 (ASM International, Materials Park, Ohio, 1992); p. 1741.
130.Vaidya, M., Guruvidyathri, K., and Murty, B.S.: Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys. J. Alloys Compd. 774, 856 (2019).
131.Chen, Y.L., Hu, Y.H., Hsieh, C.A., Yeh, J.W., and Chen, S.K.: Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloys Compd. 481, 768 (2009).
132.Ma, L., Wang, L., Zhang, T., and Inoue, A.: Bulk glass formation of Ti–Zr–Hf–Cu–M (M = Fe, Co, Ni) alloys. Mater. Trans. 43, 277 (2002).
133.Ge, W., Wang, Y., Shang, C., Zhang, Z., and Wang, Y.: Microstructures and properties of equiatomic CuZr and CuZrAlTiNi bulk alloys fabricated by mechanical alloying and spark plasma sintering. J. Mater. Sci. 52, 5726 (2017).
134.Chen, Y.L., Tsai, C.W., Juan, C.C., Chuang, M.H., Yeh, J.W., Chin, T.S., and Chen, S.K.: Amorphization of equimolar alloys with HCP elements during mechanical alloying. J. Alloys Compd. 506, 210 (2010).
135.Chen, Y.L., Hu, Y.H., Tsai, C.W., Hsieh, C.A., Kao, S.W., Yeh, J.W., Chin, T.S., and Chen, S.K.: Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying. J. Alloys Compd. 477, 696 (2009).
136.Chen, Y.L., Hu, Y.H., Tsai, C.W., Yeh, J.W., Chen, S.K., and Chang, S.Y.: Structural evolution during mechanical milling and subsequent annealing of Cu–Ni–Al–Co–Cr–Fe–Ti alloys. Mater. Chem. Phys. 118, 354 (2009).
137.Weeber, A.W. and Bakker, H.: Amorphization by ball milling. A review. Physica B 153, 93135 (1988).
138.Wang, W., Li, B., Zhai, S., Xu, J., Niu, Z., Xu, J., and Wang, Y.: Alloying behavior and properties of FeSiBAlNiCox high entropy alloys fabricated by mechanical alloying and spark plasma sintering. Met. Mater. Int. 24, 11121119 (2018).
139.Zhang, L.C., Kim, K.B., Yu, P., Zhang, W.Y., Kunz, U., and Eckert, J.: Amorphization in mechanically alloyed (Ti, Zr, Nb)–(Cu, Ni)–Al equiatomic alloys. J. Alloys Compd. 428, 157 (2007).
140.Nguyen, H-V., Kim, J-S., Kwon, Y-S., and Kim, J-C.: Amorphous Ti–Cu–Ni–Al alloys prepared by mechanical alloying. J. Mater. Sci. 44, 2700 (2009).
141.Portnoi, V.K., Leonov, A.V., Filippova, S.E., Streletskii, A.N., and Logacheva, A.I.: Mechanochemical synthesis and heating-induced transformations of a high-entropy Cr–Fe–Co–Ni–Al–Ti alloy. Inorg. Mater. 50, 1202 (2014).
142.Wang, J., Zheng, Z., Xu, J., and Wang, Y.: Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi(Nb) high entropy alloys. J. Magn. Magn. Mater. 355, 58 (2014).
143.Xu, J., Shang, C., Ge, W., Jia, H., Liaw, P.K., and Wang, Y.: Effects of elemental addition on the microstructure, thermal stability, and magnetic properties of the mechanically alloyed FeSiBAlNi high entropy alloys. Adv. Powder Technol. 27, 1418 (2016).
144.Xu, J., Axinte, E., Zhao, Z., and Wang, Y.: Effect of C and Ce addition on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNi high entropy alloys. J. Magn. Magn. Mater. 414, 59 (2016).
145.juan Ge, W., ting Li, X., Li, P., chao Qiao, P., wei Du, J., Xu, S., and Wang, Y.: Microstructures and properties of CuZrAl and CuZrAlTi medium entropy alloys prepared by mechanical alloying and spark plasma sintering. J. Iron Steel Res. Int. 24, 448 (2017).
146.Zhu, X., Zhou, X., Yu, S., Wei, C., Xu, J., and Wang, Y.: Effects of annealing on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNiM (M = Co, Cu, Ag) amorphous high entropy alloys. J. Magn. Magn. Mater. 430, 59 (2017).
147.Shatynski, S.R.: The thermochemistry of transition metal carbides. Oxid. Met. 13, 105 (1979).
148.Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Shi, J., Wang, W.M., Wang, H., Wang, Y.C., and Zhang, Q.J.: Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J. Alloys Compd. 485, 34 (2009).
149.Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Wang, W.M., Wang, H., Wang, Y.C., and Zhang, Q.J.: Characterization of nanocrystalline CoCrFeNiCuAl high-entropy alloy powder processed by mechanical alloying. Mater. Sci. Forum 620–622, 383 (2009).
150.Sriharitha, R., Murty, B.S., and Kottada, R.S.: Phase formation in mechanically alloyed AlxCoCrCuFeNi (x = 0.45, 1, 2.5, 5 mol) high entropy alloys. Intermetallics 32, 119 (2013).
151.Sriharitha, R., Murty, B.S., and Kottada, R.S.: Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys. J. Alloys Compd. 583, 419 (2014).
152.Niu, B., Ji, W., Li, N., Zhang, F., and Wu, Y.: Alloying and thermal behaviour of CoCrFeNiMn0.5Ti0.5 high-entropy alloy synthesised by mechanical alloying. Mater. Sci. Technol. 32, 94 (2016).
153.Wang, J., Guo, T., Li, J., Jia, W., and Kou, H.: Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy. Mater. Chem. Phys. 210, 192 (2018).
154.Zhu, J.M., Fu, H.M., Zhang, H.F., Wang, A.M., Li, H., and Hu, Z.Q.: Microstructure and compressive properties of multiprincipal component AlCoCrFeNiCx alloys. J. Alloys Compd. 509, 3476 (2011).
155.Zou, Y., Wheeler, J.M., Ma, H., Okle, P., and Spolenak, R.: Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability. Nano Lett. 17, 1569 (2017).
156.Yang, P., Liu, Y., Zhao, X., Cheng, J., and Li, H.: Electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy powders and its amorphous structure prepared by high-energy ball milling. J. Mater. Res. 31, 2398 (2016).
157.Moon, J., Qi, Y., Tabachnikova, E., Estrin, Y., Choi, W.M., Joo, S.H., Lee, B.J., Podolskiy, A., Tikhonovsky, M., and Kim, H.S.: Deformation-induced phase transformation of Co20Cr26Fe20Mn20Ni14 high-entropy alloy during high-pressure torsion at 77 K. Mater. Lett. 202, 86 (2017).
158.Schuh, B., Völker, B., Maier-Kiener, V., Todt, J., Li, J., and Hohenwarter, A.: Phase decomposition of a single-phase AlTiVNb high-entropy alloy after severe plastic deformation and annealing. Adv. Eng. Mater. 19, 1 (2017).
159.Čížek, J., Haušild, P., Cieslar, M., Melikhova, O., Vlasák, T., Janeček, M., Král, R., Harcuba, P., Lukáč, F., Zýka, J., and Málek, J.: Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation. J. Alloys Compd. 553, 316 (2018).
160.Wu, W., Ni, S., Liu, Y., Liu, B., and Song, M.: Amorphization at twin-twin intersected region in FeCoCrNi high-entropy alloy subjected to high-pressure torsion. Mater. Charact. 127, 111 (2017).
161.Kilmametov, A., Kulagin, R., Mazilkin, A., Seils, S., Boll, T., Heilmaier, M., and Hahn, H.: High-pressure torsion driven mechanical alloying of CoCrFeMnNi high entropy alloy. Scr. Mater. 158, 29 (2019).
162.Shahmir, H., He, J., Lu, Z., Kawasaki, M., and Langdon, T.G.: Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng., A 685, 342 (2017).
163.Shahmir, H., Mousavi, T., He, J., Lu, Z., Kawasaki, M., and Langdon, T.G.: Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing. Mater. Sci. Eng., A 705, 411 (2017).
164.Shu, F.Y., Liu, S., Zhao, H.Y., He, W.X., Sui, S.H., Zhang, J., He, P., and Xu, B.S.: Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder. J. Alloys Compd. 731, 662 (2018).
165.Yang, P., Liu, Y., Zhao, X., Cheng, J., and Li, H.: Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders. Adv. Powder Technol. 27, 1128 (2016).
166.Zhu, G., Liu, Y., and Ye, J.: Fabrication and properties of Ti(C, N)-based cermets with multi-component AlCoCrFeNi high-entropy alloys binder. Mater. Lett. 113, 80 (2013).
167.Tan, Z., Wang, L., Xue, Y., Zhang, P., Cao, T., and Cheng, X.: High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering. Mater. Des. 109, 219 (2016).
168.Yang, S., Yan, X., Yang, K., and Fu, Z.: Effect of the addition of nano-Al2O3 on the microstructure and mechanical properties of twinned Al0.4FeCrCoNi1.2Ti0.3 alloys. Vacuum 131, 69 (2016).
169.Vasanthakumar, K., Karthiselva, N.S., Chawake, N.M., and Bakshi, S.R.: Formation of TiCx during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures. J. Alloys Compd. 709, 829 (2017).
170.Sun, W., Huang, X., and Luo, A.A.: Phase formations in low density high entropy alloys. Calphad 56, 19 (2017).
171.Vaidya, M., Mohan Muralikrishna, G., Divinski, S.V., and Murty, B.S.: Experimental assessment of the thermodynamic factor for diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Scr. Mater. 157, 81 (2018).
172.Vaidya, M., Pradeep, K.G., Murty, B.S., Wilde, G., and Divinski, S.V.: Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 146, 211 (2018).
173.Divinski, S.V., Pokoev, A., Esakkiraja, N., and Paul, A.: A mystery of “sluggish diffusion” in high-entropy alloys: The truth or a myth? arXiv preprint arXiv:1804.03465 (2018).

Keywords

Related content

Powered by UNSILO

High-entropy alloys by mechanical alloying: A review

  • Mayur Vaidya (a1), Garlapati Mohan Muralikrishna (a1) and Budaraju Srinivasa Murty (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.