Skip to main content Accessibility help
×
Home

High pyroelectric properties of (Pb0.87La0.02Ba0.1)(Zr0.75Sn0.25–xTix)O3 ceramics near AFE/RFE phase boundary under DC bias field

  • Qingfeng Zhang (a1) and Shenglin Jiang (a1)

Abstract

(Pb0.87La0.02Ba0.1)(Zr0.75Sn0.25–xTix)O3 (PLBZST, 0.07 ≤ x ≤ 0.09) ceramics were prepared by the conventional solid state reaction process, and their crystal structural, ferroelectric (FE), dielectric, and pyroelectric properties were systemically investigated. A transformation from antiferroelectric (AFE) phase to FE phase was observed when x was higher than 0.08. With the content of Ti increasing from 0.07 to 0.09, the dielectric peak was steeper and the pyroelectric coefficient was greater under direct current (DC) bias fields. As the DC bias field increased from 300 V/mm to 600 V/mm, the pyroelectric coefficient increased from 4500 to 10500 μC/m2·K for PLBZST specimens with 0.09. Thus, large pyroelectric response is beneficial for the development of infrared sensors.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: zhangqingfeng12@126.com

References

Hide All
1.Whatmore, R.: Pyroelectric devices and materials. Rep. Prog. Phys. 49, 1335 (1986).
2.Rogalski, A.: Infrared detectors: Status and trends. Prog. Quantum Electron. 27, 59 (2003).
3.Watton, R.: PyX3: Ir bolometers and thermal imaging: The role of ferroelectric materials. Ferroelectrics 133, 5 (1992).
4.Clarke, R., Glazer, A.M., Ainger, F.W., Appleby, D., Poole, N.J., and Porter, S. G.: Phase transitions in lead zirconate titanate and their applications in thermal detectors. Ferroelectrics 11, 359 (1976).
5.Shaw, C.P., Gupta, S., Stringfellow, S.B., Navarro, A., Alcock, J.R., and Whatmore, R.W.: Pyroelectric properties of Mn-doped lead zirconate-lead titanate-lead magnesium niobate ceramics. J. Eur. Ceram. Soc. 22, 2123 (2002).
6.Zhang, G.Z., Jiang, S.L., Zeng, Y.K., Zhang, Y.Y., Zhang, Q.F., and Yu, Y.: High pyroelectric properties of porous Ba0.67Sr0.33TiO3 for uncooled infrared detectors. J. Am. Ceram. Soc. 92, 3132 (2009).
7.Whatmore, R.W., Osbond, P.C., and Shorrocks, N.M.: Ferroelectric materials for thermal IR detectors. Ferroelectrics 76, 351 (1987).
8.Kang, D.S., Han, M.S., Lee, S.G., and Song, S.H.: Dielectric and pyroelectric properties of barium strontium calcium titanate ceramics. J. Eur. Ceram. Soc. 23, 515 (2003).
9.Lu, S.G., Xu, Z.K., and Chen, H.: Tunability and relaxor properties of ferroelectric barium stannate titanate ceramics. Appl. Phys. Lett. 85, 5319 (2004).
10.Yu, Z., Ang, C., Guo, R., and Bhalla, A.S.: Dielectric properties and high tunability of BaTi0.7Zr0.3O3 ceramics under DC electric field. Appl. Phys. Lett. 81, 1285 (2002).
11.Padmini, P., Taylor, T.R., Lefevre, M.J., Nagra, A.S., York, R.A., and Speck, J.S.: Realization of high tunability barium strontium titanate thin films by rf magnetron sputtering. Appl. Phys. Lett. 75, 3186 (1999).
12.Berlinncourt, D.: Transducers using forced transitions between ferroelectric and antiferroelectric states. IEEE Trans. Sonics Ultrason. 13, 116 (1966).
13.Jaffe, B.: Antiferroelectric ceramics with field-enforced transitions: A new nonlinear circuit element. Proc. IRE 49, 1264 (1961).
14.Jaffe, B., Cook, W.R., and Jaffe, H.: Non-perovskite oxide piezoelectrics and ferroelectrics, in Piezoelectric Ceramics, Chap.9 (Academic Press, New York, 1971).
15.Pan, W.Y., Dam, C.Q., Zhang, Q.M., and Cross, L.E.: Large displacement transducers based on electric field forced phase transitions in the tetragonal (PbLa)(Ti, Zr, Sn)O3 family of ceramics. J. Appl. Phys. 66, 6014 (1989).
16.Yang, P. and Payne, D.A.: The effect of external field symmetry on the antiferroelectric-ferroelectric phase transformation. J. Appl. Phys. 80, 4001 (1996).
17.Chen, Z.L., Yao, X., Cross, L.E., Chen, Z.L., Yao, X., and Cross, L.E.: Depolarization behavior, and reversible pyroelectricity in lead scandium tantalate ceramics under DC biases. Ferroelectrics 49, 213 (1983).
18.Lyddane, R.H., Sachs, R.G., and Tellers, E.: On the polar vibrations of alkali halides. Phys. Rev. 59, 673 (1941).
19.Liu, W., Wang, G.S., Cao, S., Mao, C.L., Cao, F., and Dong, X.L.: The effect of excess PbO on dielectric and pyroelectric properties of lead scandium tantalate ceramics. J. Am. Ceram. Soc. 93, 2735 (2010).
20.Pokharel, B.P. and Pandey, D.: Dielectric studies of phase transitions in Pb1-xBaxZrO3. J. Appl. Phys. 88, 5364 (2000).
21.Lim, S.S., Han, M.S., Hahn, S.R., and Lee, S.G.: Dielectric and pyroelectric properties of (Ba, Sr, Ca) TiO3 ceramics for uncooled infrared detectors. Jpn. J. Appl. Phys. 39, 4835 (2000).
22.Jun, Y.H., Kim, T.Y., and Jang, H.M.: (Ba, Sr)TiO3 system under DC-bias field: I. Improvement on the thermostability of pyroelectric response by Zr-substitution. Ferroelectrics 193, 109 (1997).
23.Yoo, J.H. and Gao, W.: Pyroelectric and dielectric bolometer properties of Sr modified BaTiO3 ceramics. J. Mater. Sci. 34, 5361 (1999).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed