Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T15:10:09.661Z Has data issue: false hasContentIssue false

Growth mechanism of Ag-foil-based artificially superconducting joints of YBa2Cu3O7 monoliths

Published online by Cambridge University Press:  03 March 2011

S. Iliescu*
Affiliation:
Institut de Ciencia de Materials de Barcelona, CSIC, Campus UAB, 08193, Bellaterra, Barcelona, Spain
X. Granados
Affiliation:
Institut de Ciencia de Materials de Barcelona, CSIC, Campus UAB, 08193, Bellaterra, Barcelona, Spain
T. Puig
Affiliation:
Institut de Ciencia de Materials de Barcelona, CSIC, Campus UAB, 08193, Bellaterra, Barcelona, Spain
X. Obradors
Affiliation:
Institut de Ciencia de Materials de Barcelona, CSIC, Campus UAB, 08193, Bellaterra, Barcelona, Spain
*
a) Address all correspondence to this author. e-mail: simonailiescu@cim-montgatina.com
Get access

Abstract

A new method was developed allowing large superconducting YBa2Cu3O7 (YBCO) monoliths having complex shapes to be obtained. This method consists of joining two or more YBCO monoliths, and it is based on the interfacial melting induced by metallic Ag thin foils inserted between YBCO pellets. Studies of the microstructure and the superconducting properties of the joints obtained by using this technology have shown that a perfect interface can be obtained without agglomerations of non-superconducting phases and with a critical current density as high as that of the original blocks. No evidence of Ag precipitates was detected either at the interface or into the YBCO solid matrix, suggesting a migration of Ag. For a better understanding of the interface growth mechanism, we studied the influence of the cooling rate. The knowledge on the Ag diffusion process has enabled us to propose a model for the growth mechanism of the YBCO/Ag/YBCO interfaces.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Salama, K., Selvamanickan, V.: Joining of high current bulk Y–Ba–Cu–O superconductors. Appl. Phys. Lett. 60, 898 (1992).CrossRefGoogle Scholar
2.Shi, D.: Formation of a strongly coupled YBa2Cu3O x domain by the melt-joining method. Appl. Phys. Lett. 66, 2573 (1995).CrossRefGoogle Scholar
3.Doyle, R.A., Bradley, A.D., Lo, W., Cardwell, D.A., Campbell, A.M., Vanderbenden, Ph., Cloots, R.: High field behaviour of artificially engineered boundaries in melt-processed YBa2Cu3O7−d. Appl. Phys. Lett. 73, 117 (1998).CrossRefGoogle Scholar
4.Zheng, H., Jiang, M., Nikolova, R., Welp, U., Paulikas, A.P., Huang, Y., Crabtree, G.W., Veal, B.W., Claus, H.: High critical current “weld” joints in textured YBa2Cu3O x. Physica C 322, 1 (1999).CrossRefGoogle Scholar
5.Puig, T., Rodríguez, P. Jr.Carrillo, A.E., Obradors, X., Zheng, H., Welp, U., Chen, L., Claus, H., Veal, B.W., Crabtree, G.W.: Self-seeded YBCO welding induced by Ag additives. Physica C 363, 75 (2001).CrossRefGoogle Scholar
6.Yoshioka, J., Iida, K., Negichi, T., Sakai, N., Noto, K., Murakami, M.: Joining Y123 bulk superconductors using Yb– Ba–Cu–O and Er–Ba–Cu–O solders. Supercond. Sci. Technol. 15, 712 (2002).CrossRefGoogle Scholar
7.Prikhna, T., Gawalek, W., Moshchil, A., Surzhenko, A., Kordyuk, A., Litzkendorf, D., Dub, S., Melnikov, V., Plyushchay, A., Sergienko, N., Koval, A., Bokosh, S., Habisreuther, T. Superconducting joining of melt-textured Y–Ba–Cu–O bulk material. (International Cryogenic Materials Conference Proc. 354, Rio de Janeiro, Brazil, 2001), p. 333.Google Scholar
8.Harnois, C., Desgardin, G., Chaud, X.: A new way of welding YBa2Cu3O7-d bulk textured domains. Supercond. Sci. Technol. 14, 708 (2001).CrossRefGoogle Scholar
9.Walter, H., Jooss, Ch., Sandiumenge, F., Bringmann, B., Delamare, M.P., Leenders, A., Freyhardt, H.C.: Large intergranular critical currents in joined YBCO monoliths. Europhys. Lett. 55, 100 (2001).CrossRefGoogle Scholar
10.Lo, W., Cardwell, D.A., Bradley, A.D., Doyle, R.A., Shi, Y.H., Lloyd, S. Development of non-weak link bulk YBCO grain boundaries for high magnetic field engineering applications, in IEEE Trans. Appl. Supercond. (Appl. Supercond. Conf. Proc. 9, Palm Desert, CA, IEEE Council on Superconductivity, 1999), p. 2042.Google Scholar
11.Chen, L., Claus, H., Paulikas, A.P., Zheng, H., Veal, B.W.: Joining of melt-textured YBCO: A direct contact method. Supercond. Sci. Technol. 15, 672 (2002).CrossRefGoogle Scholar
12.Bradley, A.D., Lo, W., Mironova, M., Babu, N.H., Cardwell, D.A., Campbell, A.M., Salama, K.: Microstructure and growth of joints in melt-textured YBa2Cu3O7−d. J. Mater. Res. 16, 2298 (2001).CrossRefGoogle Scholar
13.Iliescu, S., Granados, X., Bartolomé, E., Sena, S., Carrilllo, A.E., Puig, T., Obradors, X., Evetts, J.E.: High critical current YBa2Cu3O7 artificial joints using Ag foils as welding agent. Supercond. Sci. Technol. 17, 182 (2004).CrossRefGoogle Scholar
14.Iliescu, S., Carrillo, A.E., Bartolomé, E., Granados, X., Bozzo, B., Puig, T., Obradors, X., Garcia, I., Walter, H. Melting of Ag-YBa2Cu3O7 interfaces: The path to large area high critical current welds, in Supercond. Sci. Technol. [Processing and Applications of Superconducting (RE)BCO Large Grain Materials International Workshop Proc. 18, Jena, Germany, 2003], p. S168.Google Scholar
15.Bozzo, B., Granados, X., Iliescu, S., Bartolomé, E., Puig, T., Obradors, X., Amoros, J., Carrera, M.: Determination of the inter- and intra-granular critical currents in superconducting YBa2Cu3O7 welds. Supercond. Sci. Technol. 18, 1227 (2005).CrossRefGoogle Scholar
16.Ullrich, M., Walter, H., Leenders, A., Freyhardt, H.: Batch production of high-quality-customized-shaped-monolithic HTSC. Physica C 311, 86 (1999).CrossRefGoogle Scholar
17.Kracunovska, S., Diko, P., Litzkendorf, D., Habisreuther, T., Gawalek, W.: The influence of the starting YBa2Cu3O x powder on the microstructure of melt-textured YBa2Cu3O7−x /Y2BaCuO5 bulks. Physica C 397, 123 (2003).CrossRefGoogle Scholar
18.Carrera, M., Amoros, J., Obradors, X., Fontcuberta, J.: A new method of computation of current distribution maps in bulk high-temperature superconductors: Analysis and validation. Supercond. Sci. Technol. 16, 1187 (2003).CrossRefGoogle Scholar
19.Delamare, M.P., Bringmann, B., Jooss, C., Walter, H., Leenders, A., Freyhardt, H.C.: Influence of the seed distance on the microstructure and the superconducting properties of grain boundaries in a multi-seeded melt growth monolith. Supercond. Sci. Technol. 15, 16 (2002).CrossRefGoogle Scholar
20.Schatzle, P., Krabbes, G., Stover, G., Fuchs, G., Schlafer, D.: Multi-seeded melt crystallization of YBCO bulk material for cryogenic applications. Supercond. Sci. Technol. 12, 69 (1999).CrossRefGoogle Scholar
21.Martinez, B., Gomis, V., Piñol, S., Catalan, I., Fontcuberta, J., Obradors, X.: Field induced decoupling of superconducting bands in oxygen deficient melt-textured YBa2Cu3O7−x. Appl. Phys. Lett. 63, 3081 (1993).CrossRefGoogle Scholar
22.Diko, P., Krabbes, G.: Formation of c-macrocracks during oxygenation of TSMG YBa2Cu3O7/Y2BaCuO5 single-grain superconductors. Physica C 399, 151 (2003).CrossRefGoogle Scholar
23.Nakamura, Y., Tachibana, K., Kato, S., Ban, T., Yoo, S.I., Fujimoto, H.: Phase relation in Y211-Y123-Ag system and morphology of silver in Y123 crystal. Physica C 294, 302 (1998).CrossRefGoogle Scholar
24.Ulhmann, D.R., Chalmers, B., Jackson, K.A.: Interaction between particles and a solid-liquid interface. J. Appl. Phys. 35, 2986 (1964).CrossRefGoogle Scholar
25.Izumi, T., Shiohara, Y.: Growth mechanism of YBa2Cu3O y superconductors prepared by the horizontal Bridgman method. J. Mater. Res. 7, 16 (1992).CrossRefGoogle Scholar
26.Nakamura, Y., Tachibana, K., Fujimoto, H.: Dispersion of silver in the melt grown YBa2Cu3O6+x crystal. Physica C 306, 259 (1998).CrossRefGoogle Scholar
27.Granados, X., Bozzo, B., Iliescu, S., Bartolomé, E., T., Puig, Obradors, X., Amoros, J., Carrera, M. Critical current determination of artificially welded HTS samples by in-field Hall mapping technique, in IEEE Trans. Appl. Supercond. (Appl. Supercond. Conf. Proc, 15, Jacksonville, FL, 2004), p. 3632.Google Scholar