Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-11T06:25:10.388Z Has data issue: false hasContentIssue false

Growth behavior and defects in conductive SrRuO3 thin films grown on a Si(100) substrate by sputtering

Published online by Cambridge University Press:  31 January 2011

Sang Ho Oh
Affiliation:
Department of Materials Science and Engineering and Center for Advanced Aerospace Materials (CAAM), Pohang University of Science and Technology (POSTECH), Pohang 790–784, Korea
Chan-Gyung Park
Affiliation:
Department of Materials Science and Engineering and Center for Advanced Aerospace Materials (CAAM), Pohang University of Science and Technology (POSTECH), Pohang 790–784, Korea
Get access

Abstract

The microstructural characteristics of ion-beam-sputtered conductive SrRuO3 films, such as interfacial reactions, which govern growth behavior, defects, and thermal stability, were investigated using transmission electron microscopy. On a Si substrate, two binary constituents of SrRuO3, i.e., SrO and RuO2 were shown to have quite different reaction behaviors. The reduction of the RuO2 constituent to elemental Ru by Si led to an unstable contact of SrRuO3 on the Si substrate. Possible reaction thermodynamics are suggested, which are based on the formation energies of the corresponding reactions. In the case of films grown in an oxygen-deficient atmosphere, stacking faults were observed. The stacking faults originated from twinning on the {111}pc plane to accommodate the oxygen deficiency in the growth atmosphere by changing the arrangement of RuO6 octahedra from corner to one of face sharing.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Eom, C.B., Cava, R.J., Fleming, R.M., Philips, J.M., van Dover, R.B., Marshall, J.H., Hsu, J.W.P., Krajewski, J.J., and Peck, W.F. Jr, Science 258, 1766 (1992).CrossRefGoogle Scholar
2.Hou, S.Y., Kwo, J., Watts, R.K., Cheng, J-Y., and Fork, D.K., Appl. Phys. Lett. 67, 1387 (1995).CrossRefGoogle Scholar
3.Jia, Q.X., Wu, X.D., Foltyn, S.R., and Tiwari, P., Appl. Phys. Lett. 66, 2197 (1995).CrossRefGoogle Scholar
4.Izuha, M., Abe, K., and Fukushima, N., Jpn. J. Appl. Phys. 36, 5866 (1997).CrossRefGoogle Scholar
5.Izuha, M., Abe, K., Koike, M., Takeno, S., and Fukushima, N., Appl. Phys. Lett. 70, 1405 (1997).Google Scholar
6.Hieda, K., Eguchi, K., Fukushima, N., Ayoma, T., Natori, N., Kiyotoshi, M., Yamazaki, S., Izuha, M., Niwa, S., Fukuzumi, Y., Ishibashi, Y., Kohyama, Y., Arikado, T., and Okumura, K., IEEE IDEM, 807 (1998).Google Scholar
7.Eom, C.B., Van Dover, R.B., Phillips, J.M., Werder, D.J., Marshall, J.H., Chen, C.H., Cava, R.J., Fleming, R.M., and Fork, D.K., Appl. Phys. Lett. 63, 2570 (1993).CrossRefGoogle Scholar
8.Zin, J., Liu, Z.G., and Wu, Z.C., Appl. Phys. Lett. 75, 3396 (1997).Google Scholar
9.Kim, J.H., Chien, A.T., Lange, F.F., and Wills, L., J. Mater. Res. 14, 1190 (1999).CrossRefGoogle Scholar
10.Wu, X.D., Foltyn, S.R., Dye, R.C., Coulter, Y., and Muenchausen, R.E., Appl. Phys. Lett. 62, 2434 (1995).CrossRefGoogle Scholar
11.Tiwari, P., Wu, X.D., Foltyn, S.R., Le, M.Q., Campbell, I.H., Dye, R.C., and Muenchausen, R.E., Appl. Phys. Lett. 64, 634 (1994).CrossRefGoogle Scholar
12.Wills, L.A. and Amano, J., in Ferroelectric Thin Films IV, edited by Desu, S.B., Tuttle, B.A., Ramech, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 47.Google Scholar
13.Jia, Q.X., Kung, H.H., and Wu, X.D., Thin Solid Films 299, 115 (1997).CrossRefGoogle Scholar
14.Watanabe, K., Ami, M., Tanaka, M., Mater. Res. Bull. 32, 83 (1997).Google Scholar
15.Dai, Z.R., Son, S.Y., Kim, B.S., Choi, D.K., and Ohuchi, F.S., Mater. Res. Bull. 34, 933 (1999).CrossRefGoogle Scholar
16.Tarsa, E.J., McCormick, K.L., and Speck, J.S., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D.K., Phillips, J.M., Ramesh, R., and Wolf, R.M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 73.Google Scholar
17.Barrett, C.R., Nix, W.D., and Tetelman, A.S., The Principle of Engineering Materials, (Prentice-Hall, Englewood Cliffs, NJ, 1973), pp. 74.Google Scholar
18.Hubbard, K.J. and Schlom, D.G., J. Mater. Res. 11, 2757 (1996).CrossRefGoogle Scholar
19.Nagata, H., Thin Solid Films 224, 1 (1993).Google Scholar
20.Pretorious, R., Harris, J.M., and Nicolet, M-A., J. Appl. Phys. 81, 656 (1997).Google Scholar
21.Gasser, S.M., Kolawa, E., Nicolet, M-A., J. Appl. Phys. 86, 1974 (1999).CrossRefGoogle Scholar
22.Mallika, C. and Sreedharan, O.M., J. Alloy. Comp. 191, 219 (1993).CrossRefGoogle Scholar
23.Kado, Y. and Arita, Y., J. Appl. Phys. 61, 2398 (1987).Google Scholar
24.Samsonov, G.V., The Oxide Handbook, 2nd ed. (IFI/Plenum, New York, 1982), pp. 46.CrossRefGoogle Scholar
25.Fahey, K.P., Clemens, B.M., and Wills, L.A., Appl. Phys. Lett. 67, 2480 (1995).Google Scholar
26.Reĉnik, A., Bruley, J., Mader, W., Kolar, D., and Rühle, M., Philos. Mag. B 70, 1021 (1994).CrossRefGoogle Scholar