Skip to main content Accessibility help
×
Home

Growth and properties of Si–N–C–O nanocones and graphitic nanofibers synthesized using three-nanometer diameter iron/platinum nanoparticle-catalyst

  • H. Cui (a1), X. Yang (a2), H.M. Meyer (a1), L.R. Baylor (a1), M.L. Simpson (a3), W.L. Gardner (a1), D.H. Lowndes (a1), L. An (a4) and J. Liu (a4)...

Abstract

Cone-shaped nanostructures of mixed composition (nanocones) and largely graphitic nanofibers were synthesized on silicon substrates using iron/platinum alloy nanoparticles as the catalyst in a direct-current plasma enhanced chemical vapor deposition reactor. The catalyst nanoparticles were monodisperse in size with an average diameter of 3 (±1) nm. The nanocones were produced on laterally widely dispersed catalyst particles and were oriented perpendicular to the substrate surface with an amorphous internal structure. The nanocones were produced by gas phase mixing and deposition of plasma-sputtered silicon, nitrogen, carbon, and oxygen species on a central backbone nucleated by the Fe–Pt catalyst particle. Field emission measurements showed that a very high turn-on electric field was required for electron emission from the nanocones. In contrast, the graphitic nanofibers that were produced when silicon sputtering and redeposition were minimized had the “stacked-cup” structure, and well-defined voids could be observed within nanofibers nucleated from larger catalyst particles.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: cui@ornl.gov

References

Hide All
1.Guillorn, M.A., Melechko, A.V., Merkulov, V.I., Hensley, D.K., Simpson, M.L. and Lowndes, D.H.: Self-aligned gated field emission devices using single carbon nanofiber cathodes. Appl. Phys. Lett. 81, 3660 (2002).
2.Baylor, L.R., Lowndes, D.H., Simpson, M.L., Thomas, C.E., Guillorn, M.A., Merkulov, V.I., Whealton, J.H., Ellis, E.D., Hensley, D.K. and Melechko, A.V.: Digital electrostatic electron-beam array lithography. J. Vac. Sci. Technol. B 20, 2646 (2002).
3.Zhang, L., Melechko, A.V., Merkulov, V.I., Guillorn, M.A., Simpson, M.L., Lowndes, D.H. and Doktycz, M.J.: Controlled transport of latex beads through vertically aligned carbon nanofiber membranes. Appl. Phys. Lett. 81, 135 (2002).
4.Guillorn, M.A., McKnight, T.E., Melechko, A., Merkulov, V.I., Britt, P.F., Austin, D.W., Lowndes, D.H. and Simpson, M.L.: Individually addressable vertically aligned carbon nanofiber-based electrochemical probes. J. Appl. Phys. 91, 3824 (2002).
5.Cui, H., Kalinin, S.V., Yang, X. and Lowndes, D.H.: Growth of carbon nanofibers on tipless cantilevers for high resolution topography and magnetic force imaging. Nano Lett. 4, 2157 (2004).
6.Ren, Z.F., Huang, Z.P., Wang, D.Z., Wen, J.G., Xu, J.W., Wang, J.H., Calvet, L.E., Chen, J., Klemic, J.F. and Reed, M.A.: Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 75, 1086 (1999).
7.Merkulov, V.I., Lowndes, D.H., Wei, Y.Y., Eres, G. and Voelkl, E.: Patterned growth of individual and multiple vertically aligned carbon nanofibers. Appl. Phys. Lett. 76, 3555 (2000).
8.Teo, K.B.K., Lee, S.B., Chhowalla, M., Semet, V., Binh, V.T., Groening, O., Castignolles, M., Loiseau, A., Pirio, G., Legagneux, P., Pribat, D., Hasko, D.G., Ahmed, H., Amaratunga, G.A.J. and Milne, W.I.: Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres—How uniform do they grow? Nanotechnology 14, 204 (2003).
9.Merkulov, V.I., Melechko, A.V., Guillorn, M.A., Lowndes, D.H. and Simpson, M.L.: Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition. Appl. Phys. Lett. 79, 2970 (2001).
10.Cui, H., Zhou, O. and Stoner, B.R.: Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 88, 6072 (2000).
11.Bower, C., Zhou, O., Zhu, W., Werder, D.J. and Jin, S.H.: Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 77, 2767 (2000).
12.Cui, H., Yang, X., Simpson, M.L., Lowndes, D.H. and Verela, M.: Initial growth of vertically aligned carbon nanofibers. Appl. Phys. Lett. 84, 4077 (2004).
13.Wang, Y.Y., Tang, G.Y., Koeck, F.M., Brown, B., Garguilo, J.M. and Nemanich, R.J.: Experimental studies of the formation process and morphologies of carbon nanotubes with bamboo mode structures. Diamond Relat. Mater. 13, 1287 (2004).
14.Merkulov, V.I., Melechko, A.V., Guillorn, M.A., Lowndes, D.H. and Simpson, M.L.: Sharpening of carbon nanocone tips during plasma-enhanced chemical vapor growth. Chem. Phys. Lett. 350, 381 (2001).
15.Baylor, L.R., Merkulov, V.I., Ellis, E.D., Guillorn, M.A., Lowndes, D.H., Melechko, A.V., Simpson, M.L. and Whealton, J.H.: Field emission from isolated individual vertically aligned carbon nanocones. J. Appl. Phys. 91, 4602 (2002).
16.Sun, S.H., Murray, C.B., Weller, D., Folks, L. and Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 (2000).
17.Merkulov, V.I., Guillorn, M.A., Lowndes, D.H., Simpson, M.L. and Voelkl, E.: Shaping carbon nanostructures by controlling the synthesis process. Appl. Phys. Lett. 79, 1178 (2001).
18.Hofmann, S. and Zalar, A.: Depth profiling with sample rotation—Capabilities and limitations. Surf. Interface Anal. 21, 304 (1994).
19.Saito, Y.: Nanoparticles and filled nanocapsules. Carbon 33, 979 (1995).
20.Helveg, S., Lopez-Cartes, C., Sehested, J., Hansen, P.L., Clausen, B.S., Rostrup-Nielsen, J.R., Abild-Pedersen, F. and Norskov, J.K.: Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426 (2004).
21.Chhowalla, M., Teo, K.B.K., Ducati, C., Rupesinghe, N.L., Amaratunga, G.A.J., Ferrari, A.C., Roy, D., Robertson, J. and Milne, W.I.: Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90, 5308 (2001).
22.Wen, J.G., Huang, Z.P., Wang, D.Z., Chen, J.H., Yang, S.X., Ren, Z.F., Wang, J.H., Calvet, L.E., Chen, J., Klemic, J.F. and Reed, M.A.: Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films. J. Mater. Res. 16, 3246 (2001).
23.Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., Pirio, G., Legagneux, P., Wyczisk, F., Olivier, J. and Pribat, D.: Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy. J. Vac. Sci. Technol. B 20, 116 (2002).
24.Yang, X.J., Guillorn, M.A., Austin, D., Melechko, A.V., Cui, H.T., Meyer, H.M., Merkulov, V.I., Caughman, J.B.O., Lowndes, D.H. and Simpson, M.L.: Fabrication and characterization of carbon nanofiber-based vertically integrated Schottky barrier junction diodes. Nano Lett. 3, 1751 (2003).
25.Melechko, A.V., McKnight, T.E., Hensley, D.K., Guillorn, M.A., Borisevich, A.Y., Merkulov, V.I., Lowndes, D.H. and Simpson, M.L.: Large-scale synthesis of arrays of high-aspect-ratio rigid vertically aligned carbon nanofibres. Nanotechnology 14, 1029 (2003).

Keywords

Related content

Powered by UNSILO

Growth and properties of Si–N–C–O nanocones and graphitic nanofibers synthesized using three-nanometer diameter iron/platinum nanoparticle-catalyst

  • H. Cui (a1), X. Yang (a2), H.M. Meyer (a1), L.R. Baylor (a1), M.L. Simpson (a3), W.L. Gardner (a1), D.H. Lowndes (a1), L. An (a4) and J. Liu (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.