Skip to main content Accessibility help
×
Home

Growth and characteristics of AlGaN/GaN heterostructures on sp2-bonded BN by metal–organic chemical vapor deposition

  • Qing Paduano (a1), Michael Snure (a1), Gene Siegel (a2), Darren Thomson (a1) and David Look (a3)...

Abstract

AlGaN/GaN heterostructures were grown by metal–organic chemical vapor deposition (MOCVD) on sp2-bonded BN using AlN as a nucleation layer. The best x-ray diffraction rocking curve full-width-at-half-maximums (FWHMs) are 0.13° and 0.17° for the GaN (0002) and ( $10\bar 12$ ) diffraction peaks. Hall-effect measurements show room temperature mobility near 2000 cm/V·s with sheet carrier density of ∼1 × 1013 cm−2, comparable to the best values obtained on sapphire using Fe-doped GaN buffers. The best low temperature mobility of the 2-dimensional electron gas (2DEG) is ∼33,000 cm2/V·s; indicating that the dominant scattering mechanism limiting the transport of 2DEG is interface roughness. Good quality BN grown directly onto sapphire is shown to be effective for reducing parallel conduction that exists due to residual donor impurities in the buffer. Luminescence measurements indicate good optical quality of the GaN/BN/sapphire. The residual strain in the GaN layer is found to be almost completely eliminated when it is released from the substrate.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: qing.paduano@us.af.mil

References

Hide All
1. Eastman, L.F., Tilak, V., Smart, J., Green, B.M., Chumbers, E.M., Dimitrov, R., Kim, H., Ambacher, O.S., Weiman, N., and Prunty, T.: Undoped AlGaN/GaN HEMTs for microwave power amplification. IEEE Trans. Electron Devices 48, 279 (2001).
2. Wu, Y.F., Kapolnek, D., Ibbetson, J.P., Parikh, P., Keller, B.P., and Mishra, U.K.: Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 48, 586 (2001).
3. Nakamura, S. and Krames, M.R.: History of gallium-nitride-based light-emitting diodes for illumination. Proc. IEEE 101, 2211 (2013).
4. Nakamura, S., Mukai, T., and Senoh, M.: Candela-class high brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687 (1994).
5. Mitani, E., Aojima, M., Maekawa, A., and Sano, S.: An 800-W AlGaN/GaN HEMT for S-band high-power application. CSMantech on-line Dig. (2007).
6. Schellenberg, J., Kim, B., and Phan, T.: W-band, broadband 2W GaN MMIC. In IEEE MTT-S Int. Microw. Symp. Dig., June 1–4, 2013.
7. Gaska, R., Osinsky, A., Yang, J.W., and Shur, M.S.: Self-heating in high power AlGaN/GaN HFETs. IEEE Electron Device Lett. 19, 89 (1998).
8. Alomari, M., Dussaigne, A., Martin, D., Grandjean, N., Gaquiere, C., and Kohn, E.: AlGaN/GaN HEMT on (111) single crystalline diamond. Electron. Lett. 46, 299 (2010).
9. Hirama, K., Taniyasu, Y., and Kasu, M.: AlGaN/GaN high-electron mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 98, 162112 (2011).
10. Kim, J., Bayram, C., Park, H., Cheng, C-W., Dimitrakopoulos, C., Ott, J.A., Reuter, K.B., Bedell, S.W., and Sadana, D.K.: Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 5 (2014).
11. Nepal, N., Wheeler, V.D., Anderson, T.J., Kub, F.J., Mastro, M.A., Myers-Ward, R.L., Qadri, S.B., Freitas, J.A., Hernandez, S.C., Nyakiti, L.O., Walton, S.G., Gaskill, K., and Eddy, C.R. Jr.: Epitaxial growth of III–nitride/graphene heterostructures for electronic devices. Appl. Phys. Express 6, 061003 (2013).
12. Chung, K., Lee, C.H., and Yi, G.C.: Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 330, 655 (2010).
13. Hiroki, M., Kumakura, K., Kobayahi, Y., Akasaka, T., Makimoto, T., and Yamamoto, H.: Suppression of self-heating effect in AlGaN/GaN high electron mobility transistors by substrate-transfer technology using h-BN. Appl. Phys. Lett. 105, 193509 (2014).
14. Kobayashi, Y., Kumakura, K., Akasaka, T., and Makimoto, T.: Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 484, 223 (2012).
15. Cordier, Y., Azize, M., Baron, N., Chenot, S., Tottereau, O., and Massies, J.: AlGaN/GaN HEMTs regrown by MBE on epi-ready semi-insulating GaN-on-sapphire with inhibited interface contamination. J. Cryst. Growth 309, 1 (2007).
16. Wu, M., Leach, J.H., Ni, X., Li, X., Xie, J., Doğan, S., Özgür, Ü., Morkoça, H., Paskova, T., Preble, E., Evans, K.R., and Lu, C-Z.: InAlN/GaN heterostructure field-effect transistors on Fe-doped semi-insulating GaN substrates. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.—Process., Meas., Phenom., 28, 908 (2010).
17. Choi, Y.C., Pophristic, M., Cha, H-Y., Peres, B., Spencer, M.G., and Eastman, L.F.: The effect of an Fe-doped GaN buffer on off-state breakdown characteristics in AlGaN/GaN HEMTs on Si substrate. IEEE Trans. Electron Devices 53(12), 2926 (2006).
18. Eblabla, A., Li, X., Thayne, I., Wallis, D.J., Guiney, I., and Elgaid, K.: High performance GaN high electron mobility transistors on low resistivity silicon for X-band applications. IEEE Trans. Electron Dev Lett. 36(9), 899 (2015).
19. Heikman, S., Keller, S., Mates, T., DenBaars, S.P., and Mishra, U.K.: Growth and characteristics of Fe-doped GaN. J. Cryst. Growth 248, 513 (2013).
20. Paduano, Q.S. and Snure, M.: Self-terminating growth in hexagonal boron nitride by metal organic chemical vapor deposition. Appl. Phys. Express 7, 071004 (2014).
21. AlBalushi, Z.Y., Miyagi, T., Lin, Y-C., Wang, K., Calderin, L., Bhimanapati, G., Redwing, J., and Robinson, J.: The impact of graphene properties on GaN and AlN nucleation. Surf. Sci. 634, 81 (2015).
22. Dunn, C.G. and Kogh, E.F.: Comparison of dislocation densities of primary and secondary recrystallization grains of Si–Fe. Acta Metall. 5, 548 (1957).
23. Srikant, V., Speck, J.S., and Clarke, D.R.: Mosaic structure in epitaxial thin films having large lattice mismatch. J. Appl. Phys. 82, 4286 (1997).
24. Jena, D., Smorchkova, Y., Elsass, C., Gossard, A.C., and Mishra, U.K.: Electron transport and intrinsic mobility limits in two-dimensional electron gases of III–V nitride heterostructures. arXiv:cond-mat/0103461, (2001).
25. Jena, D., Gossard, A.C., and Mishra, U.K.: Dislocation scattering in a two-dimensional electron gas. Appl. Phys. Lett. 76, 1707 (2000).
26. Paduano, Q.S., Snure, M., and Shoaf, J.: Effect of V/III ratio on the growth of hexagonal boron nitride by MOCVD. MRS Proc. 1726, msrf14-1726-j04-26 (2015).
27. Snure, M., Paduano, Q., and Kiefer, A.: Effect of surface nitridation on the epitaxial growth of few-layer sp2 BN. J. Cryst. Growth 436, 16 (2016).
28. Smorchkova, I.P., Keller, S., Heikman, S., Elsass, C.R., Heying, B., Fini, P., Speck, J.S., and Mishra, U.K.: Two-dimensional electron-gas AlN/GaN heterostructures with extremely thin AlN barriers. Appl. Phys. Lett. 77, 3998 (2000).
29. Lisesivdin, S.B., Yildiz, A., Balkan, N., Kasap, M., Ozcelik, S., and Ozbay, E.: Scattering analysis of two-dimensional electrons in AlGaN/GaN with bulk related parameters extracted by simple parallel conduction extraction method. J. Appl. Phys. 108, 013712 (2010).
30. Look, D.C., Fang, Z.Q., and Claflin, B.: Identification of donors, acceptors, and traps in bulk-like HVPE GaN. J. Cryst. Growth 281, 143 (2005).
31. Kim, H. and Andersson, T.G.: Characterization of Al x Ga1−x N layers grown by molecular beam epitaxy. Phys. B 308–310, 93 (2001).
32. Reshchilov, M.A. and Morkoc, H.: Luminescence properties of defects in GaN. J. Appl. Phys. 97, 061301 (2005).
33. Viswanath, A.K., Lee, J.I., Yu, S., Kim, D., Choi, Y., and Hong, C.: Photoluminescence studies of excitonic transitions in GaN epitaxial layers. J. Appl. Phys. 84, 3848 (1998).
34. Zhao, D.G., Xu, S.J., Xie, M.H., and Tong, S.Y.: Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire. Appl. Phys. Lett. 83, 677 (2003).
35. Zang, K.Y. and Chua, S.J.: Orders of magnitude reduction in dislocation density in GaN grown on Si (111) by nano lateral epitaxial overgrowth. Phys. Status Solidi C 5, 1585 (2008).
36. Kitamura, K., Nakashima, S., Nakamura, N., Furuta, K., and Okumura, H.: Raman scattering analysis of GaN with various dislocation densities. Phys. Status Solidi C 5, 1789 (2008).
37. Harima, H.: Properties of GaN and related compounds studied by means of Raman scattering. J. Phys.: Condens. Matter 14, R967 (2002).
38. Wagner, J-M. and Bechstedt, F.: Phonon deformation potentials of α-GaN and -AlN: An ab initio calculation. Appl. Phys. Lett. 77, 346 (2000).

Keywords

Growth and characteristics of AlGaN/GaN heterostructures on sp2-bonded BN by metal–organic chemical vapor deposition

  • Qing Paduano (a1), Michael Snure (a1), Gene Siegel (a2), Darren Thomson (a1) and David Look (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed