Skip to main content Accessibility help
×
Home

Grinding speed dependence of microstructure, conductivity, and microwave electromagnetic and absorbing characteristics of the flaked Fe particles

  • Guoxiu Tong (a1), Ji Ma (a1), Wenhua Wu (a1), Qiao Hua (a1), Ru Qiao (a1) and Haisheng Qian (a1)...

Abstract

Flake-like Fe particles with controllable size and structures were achieved by modulating only the grinding speed; evidence provided by x-ray diffraction, scanning electron microscopy, resistivity measurement system, and vector network analyzer disclosed the conductivity; and microwave electromagnetic (EM) and absorbing characteristics of the resultant products strongly depended on their morphology and structure. As grinding speed (V) increases from 0 to 250 revolutions per minute (rpm), the crystalline size decreases; meanwhile, both internal strain and diameter/thickness ratio increase and the conductivity reaches the maximal value at V = 140 rpm because of the improvement of the surface conductivity. Thin flake-like Fe particles facilely obtained at high grinding speed present higher values of the permittivity and permeability than spherical particles, which are ascribed to the multiple polarizations and the natural resonance. Thus, the aforementioned products with high permeability and low cost may be promising candidates for EM compatibility materials.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: tonggx@zjnu.cn

References

Hide All
1.Kim, S.S., Kim, S.T., Yoon, Y.C., and Lee, K.S.: Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. J. Appl. Phys. 97, 10F905 (2005).
2.Wang, C., Lv, R.T., Huang, Z.H., Kang, F.Y., and Gu, J.L.: Synthesis and microwave absorbing properties of FeCo alloy particles/graphite nanoflake composites. J. Alloy. Comp. 509, 494 (2011).
3.Zhou, P.H., Deng, L.J., Xie, J.L., and Liang, D.F.: Effects of particle morphology and crystal structure on the microwave properties of flake-like nanocrystalline Fe3Co2 particles. J. Alloy. Comp. 448, 303 (2008).
4.Yang, Y., Xu, C.L., Xia, Y.X., Wang, T., and Li, F.S.: Synthesis and microwave absorption properties of FeCo nanoplates. J. Alloy. Comp. 493, 549 (2010).
5.Deng, L.J., Zhou, P.H., Xie, J.L., and Zhang, L.: Characterization and microwave resonance in nanocrystalline FeCoNi flake composite. J. Appl. Phys. 101, 103916 (2007).
6.Qiao, L., Wen, F.S., Wei, J.Q., Wang, J.B., and Li, F.S.: Microwave permeability spectra of flake-shaped FeCuNbSiB particle composites. J. Appl. Phys. 103, 063903 (2008).
7.Liu, J.H., Ma, T.Y., Tong, H., Luo, W., and Yan, M.: Electromagnetic wave absorption properties of flaky Fe–Ti–Si–Al nanocrystalline composites. J. Magn. Magn. Mater. 322, 940 (2010).
8.Wang, X., Gong, R.Z., Luo, H., and Feng, Z.K.: Microwave properties of surface modified Fe–Co–Zr alloy flakes with mechanochemically synthesized polystyrene. J. Alloy. Comp. 480, 761 (2009).
9.Zhou, P.H., Liu, Y.Q., and Deng, L.J.: Effect of 3d transition metal substitution on microstructure and microwave absorption properties of FeSiB nanocrystalline flakes. J. Magn. Magn. Mater. 322, 794 (2010).
10.Walser, R.M. and Kang, W.: Fabrication and properties of microforged ferromagnetic nanoflakes. IEEE Trans. Magn. 34, 1144 (1998).
11.Fang, X.S., Hu, L.F., Ye, C.H., and Zhang, L.D.: One-dimensional inorganic semiconductor nanostructures: A new carrier for nanosensors. Pure Appl. Chem. 82, 2185 (2010).
12.Tong, G.X., Hua, Q., Wu, W.H., Qin, M.Y., Li, L.C., and Gong, P.J.: Effect of liquid-solid ratio on the morphology, structure, conductivity, and electromagnetic characteristics of iron particles. Sci. China Ser. E Technol. Sci. 54, 484 (2011).
13.Fang, X.S., Zhai, T.Y., Gautam, U.K., Li, L., Wu, L.M., Bando, Y., and Golberg, D.: ZnS nanostructures: From synthesis to applications. Prog. Mater. Sci. 56, 175 (2011).
14.Tong, G.X., Guan, J.G., Xiao, Z.D., Mou, F.Z., Wang, W., and Yan, G.Q.: In situ generated H2 bubble-engaged assembly: A one-step approach for shape-controlled growth of Fe nanostructures. Chem. Mater. 20, 3535 (2008).
15.Benjamin, J.S.: Dispersion strengthened super alloys by mechanical alloying. Metall. Trans. A 1, 2943 (1970).
16.Kim, Y.D., Chung, J.Y., Kim, J., and Jeon, H.: Formation of nanocrystalline Fe-Co powders produced by mechanical alloying. Mater. Sci. Eng. A 291, 17 (2000).
17.Tong, G.X., Wu, W.H., Hua, Q., Miao, Y.Q., Guan, J.G., and Qian, H.S.: Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2-18 GHz ranges. J. Alloy. Comp. 509, 451 (2011).
18.Fuchs, K.: The conductivity of thin metallic films according to the electron theory of metals. Math. Proc. Cambridge Philos. Soc. 34, 100 (1938).
19.Hoffmann, H. and Vancea, J.: Critical assessment of thickness-dependent conductivity of thin metal films. Thin Solid Films 85, 147 (1981).
20.Klemens, P.G. and Gell, M.: Thermal conductivity of thermal-barrier coatings. Mater. Sci. Eng. A 245, 143 (1998).
21.Soyez, G., Eastman, J.A., Thompson, L.J., Bai, G.R., Baldo, P.M., McCormick, A.W., DiMelfi, R.J., Elmustafa, A.A., Tambwe, M.F., and Stone, D.S.: Grain-size-dependent thermal conductivity of nanocrystalline yttriastabilized zirconia films grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 77, 1155 (2000).
22.Fang, X.S., Ye, C.H., Zhang, L.D., and Xie, T.: Twinning-mediated growth of Al2O3 nanobelts and their enhanced dielectric responses. Adv. Mater. 17, 1661 (2005).
23.Fang, X.S., Ye, C.H., Zhang, L.D., Zhang, J.X., Zhao, J.W., and Yan, P.: Direct observation of the growth process of MgO nanoflowers by a simple chemical route. Small 1, 422 (2005).
24.Tong, G.X., Guan, J.G., Fan, X.A., Wang, W., and Li, W.: Influence of pyrolysis temperature on the static magnetic and microwave electromagnetic properties of polycrystalline iron fibers. Acta Metall. Sinica 44, 867 (2008).
25.Fang, X.S., Ye, C.H., Xie, T., Wang, Z.Y., Zhao, J.W., and Zhang, L.D.: Regular MgO nanoflowers and their enhanced dielectric responses. Appl. Phys. Lett. 88, 013101 (2006).
26.Li, H.R.: Introduction to Dielectric Physics (Chengdu University of Technology Press, Chengdu, 1990), p. 89.
27.Liu, J.R., Itoh, M., and Machida, K.: Magnetic and electromagnetic wave absorption properties of α-Fe/Z-type Ba-ferrite nanocomposites. Appl. Phys. Lett. 88, 062503 (2006).
28.Li, Z.W., Chen, L., Ong, C.K., and Yang, Z.: Static and dynamic magnetic properties of Co2Z barium ferrite nanoparticle composites. J. Mater. Sci. 40, 719 (2005).
29.Sugimoto, S., Maeda, T., Book, D., Kagotani, T., Inomata, K., Homma, M., Ota, H., Houjou, Y., and Sato, R.: GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen. J. Alloy. Comp. 330, 301 (2002).
30.Wu, M.Z., Zhang, Y.D., Hui, S., Xiao, T.D., Ge, S.H., Hines, W.A., Budnick, J.I., and Taylor, G.W.: Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 80, 4404 (2002).
31.Li, J.G., Huang, J.J., Qin, Y., and Ma, F.: Magnetic and microwave properties of cobalt nanoplatelets. Mater. Sci. Eng. B 138, 199 (2007).
32.Toneguzzo, P., Viau, G., Acher, O., Guillet, F., Bruneton, E., Fievet-Vincent, F., and Fievet, F.: CoNi and FeCoNi fine particles prepared by the polyol process: Physico-chemical characterization and dynamic magnetic properties. J. Mater. Sci. 35, 3767 (2000).
33.Mercier, D., Lévy, J.C.S., Viau, G., Fiévet-Vincent, F., Fiévet, F., Toneguzzo, P., and Acher, O.: Magnetic resonance in spherical Co-Ni and Fe-Co-Ni particles. Phys. Rev. B 62, 532 (2000).
34.Yoshida, S., Ando, S., Shimada, Y., Suzuki, K., Nomura, K., and Fukamichi, K.: Crystal structure and microwave permeability of very thin Fe-Si-Al flakes produced by microforging. J. Appl. Phys. 93, 6659 (2003).
35.Tang, X., Tian, Q., Zhao, B.Y., and Hu, K.: The microwave electromagnetic and absorption properties of some porous iron powders. Mater. Sci. Eng. A 445446, 135 (2007).
36.Fan, X.A., Guan, J.G., Wang, W., and Tong, G.X.: Morphology evolution, magnetic and microwave absorption properties of nano/submicrometre iron particles obtained at different reduced temperatures. J. Phys. D: Appl. Phys. 42, 075006 (2009).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed