Skip to main content Accessibility help
×
Home

A green and facile strategy for hierarchically porous poly(L-lactic acid)/poly(ε-caprolactone) monolithic composites

  • Mingjing Chen (a1), Juan Qiao (a1), Xiaoxia Sun (a1), Wenjuan Chen (a1), Hiroshi Uyama (a2) and Xinhou Wang (a1)...

Abstract

Hierarchically porous poly(L-lactic acid) (PLLA)/poly(ε-caprolactone) (PCL) monolithic composites were fabricated by nonsolvent-induced phase separation (NIPS) method without any template for the first time. A homogeneous hierarchical porous structure with relatively large specific surface area containing both mesopores and macropores was confirmed by pore size distribution plots and scanning electron microscopy images, respectively. Fourier transform infrared analysis (FTIR) revealed that PLLA and PCL were physically blended. Differential scanning calorimeter (DSC) analysis further showed that the two components were physically blended but had a slight thermal compatibility. Meanwhile, X-ray diffraction (XRD) tests indicated that the addition of PCL hindered the crystallization of PLLA. Herein, the formation of the mesopores and macropores during the phase separation process was explained from the microscopic point of view according to the results of XRD and DSC. The present monolithic composites with hierarchically porous structures had promising prospect for applications of tissue engineering.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: xxsun@dhu.edu.cn

References

Hide All
1.Sun, X., Fujimoto, T., and Uyama, H.: Fabrication of a poly(vinyl alcohol) monolith via thermally impacted non-solvent-induced phase separation. Polym. J. 45, 1101 (2013).
2.Lv, Y., Lin, Z., and Svec, F.: “Thiol–ene” click chemistry: A facile and versatile route for the functionalization of porous polymer monoliths. Analyst 137, 4114 (2012).
3.Bolton, K.F., Canty, A.J., Deverell, J.A., Guijt, R.M., Hilder, E.F., Rodemann, T., and Smith, J.A.: Macroporous monolith supports for continuous flow capillary microreactors. Tetrahedron Lett. 47, 9321 (2006).
4.Sun, X., Xin, Y., Wang, X., and Uyama, H.: Functionalized acetoacetylated poly(vinyl alcohol) monoliths for enzyme immobilization: A phase separation method. Colloid Polym. Sci. 295, 1827 (2017).
5.Liu, Y., Huang, G., Gao, C., Zhang, L., Chen, M., Xu, X., Gao, J., Pan, C., Yang, N., and Liu, Y.: Biodegradable polylactic acid porous monoliths as effective oil sorbents. Compos. Sci. Technol. 118, 9 (2015).
6.Wang, B., Chen, W., Zhang, L., Li, Z., Liu, C., Chen, J., and Shen, C.: Hydrophobic polycarbonate monolith with mesoporous nest-like structure: An effective oil sorbent. Mater. Lett. 188, 201 (2017).
7.Patrício, T., Domingos, M., Gloria, A., D’Amora, U., Coelho, J.F., and Bártolo, P.J.: Fabrication and characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Rapid Prototyp. J. 20, 145 (2014).
8.Rezabeigi, E., Wood-Adams, P.M., and Drew, R.A.L.: Morphological examination of highly porous polylactic acid/Bioglass® scaffolds produced via nonsolvent induced phase separation. J. Biomed. Mater. Res., Part B 105, 2433 (2017).
9.Kang, Y., Wang, C., Qiao, Y., Gu, J., Zhang, H., Peijs, T., Kong, J., Zhang, G., and Shi, X.: Tissue-engineered trachea consisting of electrospun patterned sc-PLA/GO-g-IL fibrous membranes with antibacterial property and 3D-printed skeletons with elasticity. Biomacromolecules 20, 1765 (2019).
10.Dhainaut, J., Dacquin, J-P., Lee, A.F., and Wilson, K.: Hierarchical macroporous–mesoporous SBA-15 sulfonic acidcatalysts for biodiesel synthesis. Green Chem. 12, 296 (2010).
11.Hiroaki Sai, K.W.T., Hur, K., Asenath-Smith, E., Hovden, R., Jiang, Y., Riccio, M., Muller, D.A., Elser, V., Estroff, L.A., Gruner, S.M., and Wiesner, U.: Hierarchical porous polymer scaffolds from block copolymers. Science 341, 530 (2013).
12.Morariu, M.D., Voicu, N.E., Schaffer, E., Lin, Z., Russell, T.P., and Steiner, U.: Hierarchical structure formation and pattern replication induced by an electric field. Nat. Mater. 2, 48 (2003).
13.Okada, K., Nandi, M., Maruyama, J., Oka, T., Tsujimoto, T., Kondoh, K., and Uyama, H.: Fabrication of mesoporous polymer monolith: A template-free approach. Chem. Commun. 47, 7422 (2011).
14.Önder, Ö.C., Yilgör, E., and Yilgör, I.: Fabrication of rigid poly(lactic acid) foams via thermally induced phase separation. Polymer 107, 240 (2016).
15.Wang, G., Xin, Y., and Uyama, H.: Facile fabrication of mesoporous poly(ethylene-co-vinyl alcohol)/chitosan blend monoliths. Carbohydr. Polym. 132, 345 (2015).
16.Xin, Y., Fujimoto, T., and Uyama, H.: Facile fabrication of polycarbonate monolith by non-solvent induced phase separation method. Polymer 53, 2847 (2012).
17.Xin, Y. and Uyama, H.: Fabrication of polycarbonate and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) blend monolith via non-solvent-induced phase separation method. Chem. Lett. 41, 1509 (2012).
18.Yoneda, S., Han, W., Hasegawa, U., and Uyama, H.: Facile fabrication of poly(methyl methacrylate) monolith via thermally induced phase separation by utilizing unique cosolvency. Polymer 55, 3212 (2014).
19.Sun, X., Sun, G., and Wang, X.: Morphology modeling for polymer monolith obtained by non-solvent-induced phase separation. Polymer 108, 432 (2017).
20.Huangfu, Y., Liang, C., Han, Y., Qiu, H., Song, P., Wang, L., Kong, J., and Gu, J.: Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos. Sci. Technol. 169, 70 (2019).
21.Huangfu, Y., Ruan, K., Qiu, H., Lu, Y., Liang, C., Kong, J., and Gu, J.: Fabrication and investigation on the PANI/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Composites, Part A 121, 265 (2019).
22.Sun, X. and Uyama, H.: A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure. Nanoscale Res. Lett. 8, 411–415 (2013).
23.Han, W., Yamauchi, M., Hasegawa, U., Noda, M., Fukui, K., van der Vlies, A.J., Uchiyama, S., and Uyama, H.: Pepsin immobilization on an aldehyde-modified polymethacrylate monolith and its application for protein analysis. J. Biosci. Bioeng. 119, 505 (2015).
24.Park, S-B., Sakamoto, J., Sung, M-H., and Uyama, H.: Macroscopic cavities within a microporous 3-D network: A poly(γ-glutamic acid) monolith prepared by combination of particulate templates and a phase separation technique. Polymer 54, 6114 (2013).
25.Sun, X. and Uyama, H.: In situ mineralization of hydroxyapatite on poly(vinyl alcohol) monolithic scaffolds for tissue engineering. Colloid Polym. Sci. 292, 1073 (2014).
26.Wang, G. and Uyama, H.: Facile synthesis of flexible macroporous polypropylene sponges for separation of oil and water. Sci. Rep. 6, 21265 (2016).
27.Wang, G. and Uyama, H.: Reactive poly(ethylene-co-vinyl alcohol) monoliths with tunable pore morphology for enzyme immobilization. Colloid Polym. Sci. 293, 2429 (2015).
28.Sabir, M.I., Xu, X., and Li, L.: A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci. 44, 5713 (2009).
29.Dong, X., Zhang, J., Pang, L., Chen, J., Qi, M., You, S., and Ren, N.: An anisotropic three-dimensional electrospun micro/nanofibrous hybrid PLA/PCL scaffold. RSC Adv. 9, 9838 (2019).
30.Shadjou, N. and Hasanzadeh, M.: Bone tissue engineering using silica-based mesoporous nanobiomaterials: Recent progress. Mater. Sci. Eng., C 55, 401 (2015).
31.Sun, X-R., Cao, Z-Q., Bao, R-Y., Liu, Z., Xie, B-H., Yang, M-B., and Yang, W.: A green and facile melt approach for hierarchically porous polylactide monoliths based on stereocomplex crystallite network. ACS Sustainable Chem. Eng. 5, 8334 (2017).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed