Skip to main content Accessibility help

Greatly enhanced magneto-dielectric performance of the Ni0.5Zn0.5Fe2O4/polyvinylidene fluoride composites with annealed ferrite powders for antenna applications

  • Li He (a1), Jing Liu (a1), Hongwei Xie (a1) and Chao Zhang (a1)


A series of Ni0.5Zn0.5Fe2O4 (NZO)/polyvinylidene fluoride (PVDF) composites were prepared and studied for their potential application as magneto-dielectric antenna substrate materials. The NZO ferrite powders were synthesized by the solid-state reaction method and then annealed at different temperatures of 700, 900 and 1100 °C. The influence of the annealing treatment on the grain size, crystallinity and magneto-dielectric properties were discussed. The magnetic and dielectric properties of the composites were measured in 1 MHz–1 GHz and 100 Hz–1 GHz, respectively. With the annealing temperature increase from 700 to 1100 °C, the initial permeability of the composites increases from 3.89 to 7.93, while the static permittivity changed regularly with the growing grain size. Almost equal values of μ′ and ε′ are obtained in the composite sample with the 1100 °C annealed NZO powders. Considering the relatively low magnetic and dielectric loss tangent, this material is the promising candidate for the design of miniaturized antennas.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Kong, L.B., Li, Z.W., Liu, L., Huang, R., Abshinova, M., Yang, Z.H., Tang, C.B., Tan, P.K., Deng, C.R., and Matitsine, S.: Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev. 58, 203 (2013).
2. Yan, S.J., Zhen, L., Xu, C.Y., Jiang, J.T., Shao, W.Z., and Tang, J.K.: Synthesis, characterization and electromagnetic properties of Fe1−x Co x alloy flower-like microparticles. J. Magn. Magn. Mater. 323, 515 (2011).
3. Lee, J., Hong, Y.K., Bae, S., Jalli, J., Abo, G.S., Park, J., Seong, W.M., Park, S.H., and Ahn, W.K.: Low loss Co2Z Ba3Co2Fe24O41-glass composite for gigahertz antenna application. J. Appl. Phys. 109, 07E530 (2011).
4. Keun, J.J., Ki, A.W., Sig, K.J., Hoon, P.S., Ho, K.G., and Mo, S.W.: Miniaturized T-DMB antenna with a low-loss Ni–Mn–Co ferrite for mobile handset applications. IEEE Magn. Lett. 1, 5000104 (2010).
5. Borah, K. and Bhattacharyya, N.S.: Magnetodielectric composite with ferrite inclusions as substrates for microstrip patch antennas at microwave frequencies. Composites, Part B 43, 1309 (2012).
6. Thakur, A., Chevalier, A., Mattei, J.L., and Queffelec, P.: Low-loss spinel nanoferrite with matching permeability and permittivity in the ultrahigh frequency range. J. Appl. Phys. 108, 014301 (2010).
7. Shirakata, Y., Hidaka, N., Ishitsuka, M., Teramoto, A., and Ohmi, T.: High permeability and low loss Ni–Fe composite material for high-frequency applications. IEEE Trans. Magn. 44, 2100 (2008).
8. Fu, L.S., Jiang, J.T., Xu, C.Y., and Zhen, L.: Synthesis of hexagonal Fe microflakes with excellent microwave absorption performance. CrystEngComm 14, 6827 (2012).
9. Bellucci, F.S., Lobato de Almeida, F.C., Lima Nobre, M.A., Angel Rodriguez-Perez, M., Paschoalini, A.T., and Job, A.E.: Magnetic properties of vulcanized natural rubber nanocomposites as a function of the concentration, size and shape of the magnetic fillers. Composites, Part B 85, 196 (2016).
10. Wen, S.L., Liu, Y., and Zhao, X.C.: Effect of annealing on electromagnetic performance and microwave absorption of spherical cobalt particles. J. Phys. D: Appl. Phys. 48, 405001 (2015).
11. Guo, Y.P., Liu, Y., Wang, J.L., Withers, R.L., Chen, H., Jin, L., and Smith, P.: Giant magnetodielectric effect in 0-3Ni0.5Zn0.5Fe2O4-poly(vinylidene-fluoride) nanocomposite films. J. Phys. Chem. C. 114, 13861 (2010).
12. Martins, P., Costa, C.M., Botelho, G., Lanceros-Mendez, S., Barandiaran, J.M., and Gutierrez, J.: Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites. Mater. Chem. Phys. 131, 698 (2012).
13. Azhagushanmugam, S.J., Suriyanarayanan, N., and Jayaprakash, R.: Effect of cation distribution on structural and magnetic properties of nickel cobalt zinc ferrites. Adv. Mater. Sci. Eng. 2013, 713684 (2013).
14. Zheng, Z.L., Zhang, H.W., Xiao, J.Q., Yang, Q.H., and Jia, L.J.: Low loss NiZn spinel ferrite-W-type hexaferrite composites from BaM addition for antenna applications. J. Phys. D: Appl. Phys. 47, 115001 (2014).
15. Zou, P., Yu, W., and Bain, J.A.: Influence of stress and texture on soft magnetic properties of thin films. IEEE Trans. Magn. 38, 3501 (2002).
16. Staunton, J.B., Szunyogh, L., Buruzs, A., Gyorffy, B.L., Ostanin, S., and Udvardi, L.: Temperature dependence of magnetic anisotropy: An ab initio approach. Phys. Rev. B. 74, 144411 (2006).
17. Moyet, R.P., Cardona, Y., Vargas, P., Silva, J., and Uwakweh, O.N.C.: Coercivity and superparamagnetic evolution of high energy ball milled (HEBM) bulk CoFe2O4 material. Mater. Charact. 61, 1317 (2010).
18. Abdoli, H., Ghanbari, M., and Baghshahi, S.: Thermal stability of nanostructured aluminum powder synthesized by high-energy milling. Mater. Sci. Eng., A 528, 6702 (2011).
19. Fang, X., Wang, Z.L., Zhang, N., and Mao, J.M.: Giant uniaxial stress-permeability effect on electrical parameters of heterotypic MnZn ferrite devices and electromagnetic effect. Magn. Magn. Mater. 321, 2859 (2009).
20. Igarashi, H. and Okazaki, K.: Effects of porosity and grain-size on magnetic-properties of NiZn ferrite. J. Am. Ceram. Soc. 60, 51 (1977).
21. Clausell, C., Barba, A., Nuno, L., and Jarque, J.C.: Effect of average grain size and sintered relative density on the imaginary part—mu″ of the complex magnetic permeability of (Cu0.12Ni0.23Zn0.65) Fe2O4 system. Ceram. Int. 42, 4256 (2016).
22. Beitollahi, A. and Hoor, M.: Effect of sintering temperature on the microstructure and high-frequency magnetic properties of Ni0.467Zn0.07Co0.015Fe0.511O4 ferrite. J. Mater. Sci.: Mater. Electron. 14, 477 (2003).
23. Deka, S. and Joy, P.A.: Enhanced permeability and dielectric constant of NiZn ferrite synthesized in nanocrystalline form by a combustion method. J. Am. Ceram. Soc. 90, 1494 (2007).
24. Sakellari, D., Tsakaloudi, V., Polychroniadis, E.K., and Zaspalis, V.: Microstructural phenomena controlling losses in NiCuZn-ferrites as studied by transmission electron microscopy. J. Am. Ceram. Soc. 91, 366 (2008).
25. Larsen, P.K. and Metsleaa, R.: Electric and dielectric properties of polycrystalline yttrium iron-garnet space-charge-limited currents in an inhomogeneous solid. Phys. Rev. B 8, 2016 (1973).
26. Dang, Z.M., Wang, H.Y., Peng, B., and Nan, C.W.: Effect of BaTiO3 size on dielectric property of BaTiO3/PVDF composites. J. Electroceram. 21, 381 (2008).
27. Kong, L.B., Li, Z.W., Lin, G.Q., and Gan, Y.B.: Ni–Zn ferrites composites with almost equal values of permeability and permittivity for low-frequency antenna design. IEEE Trans. Magn. 43, 6 (2007).
28. Su, Z., Chang, H., Wang, X., Sokolov, A.S., Hu, B., Chen, Y., and Harris, V.G.: Low loss factor Co2Z ferrite composites with equivalent permittivity and permeability for ultra-high frequency applications. Appl. Phys. Lett. 105, 062402 (2014).
29. Fawzi, A.S., Sheikh, A.D., and Mathe, V.L.: Structural, dielectric properties and AC conductivity of Ni1−x Zn x Fe2O4 spinel ferrites. J. Alloys Compd. 502, 231 (2010).
30. Yadav, S.P., Shinde, S.S., Kadam, A.A., and Rajpure, K.Y.: Structural, morphological, dielectrical, magnetic and impedance properties of Co1−x Mn x Fe2O4 . J. Alloys Compd. 555, 330 (2013).
31. Berthelot, R., Basly, B., Buffiere, S., Majimel, J., Chevallier, G., Weibel, A., Veillere, A., Etienne, L., Chung, U.C., Goglio, G., Maglione, M., Estournes, C., Mornet, S., and Elissalde, C.: From core–shell BaTiO3@MgO to nanostructured low dielectric loss ceramics by spark plasma sintering. J. Mater. Chem. C 2, 683 (2014).
32. Iqbal, M.A., Islam, M.U., Ali, I., Khan, M.A., Sadiq, I., and Ali, I.: High frequency dielectric properties of Eu3+-substituted Li–Mg ferrites synthesized by sol-gel auto-combustion method. J. Alloys Compd. 586, 404 (2014).
33. Chen, W.S., Chang, Y.L., Hsiang, H.I., Hsu, F.C., and Yen, F.S.: Effects of titanate coupling agent on the dielectric properties of NiZn ferrite powders-epoxy resin coatings. Ceram. Int. 37, 2347 (2011).
34. Souriou, D., Mattei, J.L., Chevalier, A., and Queffelec, P.: Influential parameters on electromagnetic properties of nickel–zinc ferrites for antenna miniaturization. J. Appl. Phys. 107, 09A518 (2010).


Greatly enhanced magneto-dielectric performance of the Ni0.5Zn0.5Fe2O4/polyvinylidene fluoride composites with annealed ferrite powders for antenna applications

  • Li He (a1), Jing Liu (a1), Hongwei Xie (a1) and Chao Zhang (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed