Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T14:07:09.828Z Has data issue: false hasContentIssue false

Grain morphology and cation composition heterogeneity of Pb(ZrxTi1–x)O3 thin films deposited by metal-organic chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

I-Fei Tsu
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
G-R. Bai
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
C. M. Foster
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
K. L. Merkle
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
K. C. Liu
Affiliation:
Water Chemistry Program, University of Wisconsin-Madison, Madison, Wisconsin 53706
Get access

Abstract

The preferred orientation, grain morphology, and composition heterogeneity of the polycrystalline Pb(ZrxTi1–x)O3 (PZT) thin films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and x-ray energy dispersive spectroscopy (EDS). PZT thin films with nominal x = 0.5 were grown by metal-organic chemical vapor deposition (MOCVD) on (110)- and (101)-textured RuO2 bottom electrodes at temperatures ≤525 °C. Columnar grain microstructure with strongly faceted surface morphology was observed in both films. The grain morphology and surface roughness of the PZT films were observed to depend on those of the underlying RuO2 layers. TEM-EDS analysis shows notable cation composition heterogeneity in length scales of 0.2–2 μm. Pronounced Pb composition deficiency and heterogeneity were also observed in PZT/(110)RuO2 in length scales above 40 μm. The grain morphology and cation heterogeneity of the PZT films are discussed on the basis of diffusion-limited columnar growth mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Scott, J. F. and de Araujo, C. P. A., Science 246, 1400 (1988).CrossRefGoogle Scholar
2.Klee, M., De Veirman, A., and Mackens, U., Philips. J. Research 47, 263 (1993).Google Scholar
3.Huffman, M., Goral, J. P., Al-Jassim, M. M., and Echer, C., J. Vac. Sci. Technol. A 10 (4), 1584 (1992).Google Scholar
4.Carim, A. H., Tuttle, B. A., Doughty, D. H., and Martinez, S. L., J. Am. Ceram. Soc. 74 (6), 1455 (1991).CrossRefGoogle Scholar
5.Tuttle, B. A., Headley, T. J., Bunker, B. C., Schwartz, R. W., Zender, T. J., Hernandez, C. L., Goodnow, D. C., Tissot, R. J., Michael, J., and Carim, A. H., J. Mater. Res. 7, 1876 (1992).Google Scholar
6.Tuttle, B. A., Voigt, J. A., Goodnow, D. C., Lamppa, D. L., Headley, T. J., Eatough, M. O., Zender, G., Nasby, R. D., and Rodgers, S. M., J. Am. Ceram. Soc. 76 (6), 1537 (1993).Google Scholar
7.Reaney, I. M., Brooks, K., Klissurska, R., Pawlaczyk, C., and Setter, N., J. Am. Ceram. Soc. 77 (5), 1209 (1994).Google Scholar
8.Tuttle, B. A., Headley, T. J., Al-Shareef, H. N., Voigt, J. A., Rodriguez, M., Michael, J., and Warren, W. L., J. Mater. Res. 11, 2309 (1996).Google Scholar
9.Brooks, K. G., Reaney, I. M., Klissurska, R., Huang, Y., Bursill, L., and Setter, N., J. Mater. Res. 9, 2540 (1994).Google Scholar
10.Tominaga, K., Miyajima, M., Sakashita, Y., Segawa, H., and Okada, M., Jpn. J. Appl. Phys. 29, L1874 (1990).Google Scholar
11.Sakashita, Y., Ono, T., Segawa, H., Tominaga, K., and Okada, M., J. Appl. Phys. 69 (12), 8352 (1991).Google Scholar
12.Peng, C. H. and Desu, S. B., Appl. Phys. Lett. 61 (1), 16 (1992).Google Scholar
13.Tao, W., Desu, S. B., and Li, T. K., Mater. Lett. 23, 177 (1995).Google Scholar
14.Foster, C. M., Csencsits, R., Baldo, P. M., Bai, G. R., Li, Z., Rehn, L. E., Wills, L. A., Hiskes, R., Dimos, D., and Sinclair, M. B., in Ferroelectric Thin Films IV, edited by Tuttle, B. A., Desu, S. B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 307.Google Scholar
15.Foster, C. M., Bai, G. R., Wang, A., Vetrone, J., Huang, Y., and Jammy, R., Integ. Ferroelectr. (in press).Google Scholar
16.Foster, C. M., Bai, G. R., Csencsits, R., Vetrone, J., Jammy, R., Wills, L. A., Carr, E., and Amano, J., J. Appl. Phys. 81 (5), 2349 (1997).Google Scholar
17.Messier, R. and Yehoda, J. E., J. Appl. Phys. 58, 3739 (1985).Google Scholar
18.Bales, G. S., Bruinsma, R., Eklund, E. A., Karunasiri, R. P. U., Rudnick, J., and Zangwill, A., Science 249, 264 (1990).CrossRefGoogle Scholar
19.Sakashita, Y., Ono, T., Segawa, H., Tominaga, K., and Okada, M., J. Appl. Phys. 69 (12), 8352 (1991).CrossRefGoogle Scholar
20.Al-Shareef, H. N., Bellur, K. R., Auciello, O., Chen, X., and Kingon, A. I., Thin Solid Films 252, 38 (1994).Google Scholar
21.Takayama, R. and Tomita, Y., J. Appl. Phys. 65 (4), 1666 (1989).Google Scholar
22.Klee, M., Eusemann, R., Waser, R., Brand, W., and van Hal, H., J. Appl. Phys. 72 (4), 1566 (1992).Google Scholar
23.Al-Shareef, H. N., Tuttle, B. A., Warren, W. L., Headley, T. J., Dimos, D., Voigt, J. A., and Nasby, R. D., J. Appl. Phys. 79 (2), 1013 (1996).Google Scholar
24.Okada, A., J. Appl. Phys. 48 (7), 2905 (1977).Google Scholar
25.Lefevre, M. J., Speck, J. S., Schwartz, R. W., Dimos, D., and Lockwood, S. J., J. Mater. Res. 11, 2076 (1996).Google Scholar
26.Kwok, C. K. and Desu, S. B., Appl. Phys. Lett. 60 (12), 1430 (1992).Google Scholar
27.Bai, G. R., Wang, A., Foster, C. M., Vetrone, J., Patel, J., and Wu, X., Thin Solid Films (in press).Google Scholar
28.Vetrone, J., Foster, C. M., Bai, G. R., Wang, A., Patel, J., and Wu, X., submitted to J. Mater. Res.Google Scholar
29.Foster, C. M. et al. , in preparation.Google Scholar
30. JCPDS file number 33–784.Google Scholar
31.Witten, T. A., Jr. and Sander, L. M., Phys. Rev. Lett. 47, 1400 (1981).Google Scholar
32.Lichter, S. and Chen, J., Phys. Rev. Lett. 56, 1396 (1986).Google Scholar
33.Movchan, B. A. and Demshchishin, A. V., Phys. Met. Metallogr. (Engl. Trans.) 28, 83 (1969).Google Scholar
34.Nakahara, S. and Hebard, A. F., Thin Solid Films 102, 345 (1983).Google Scholar
35.Thornton, J. A., Annu. Rev. Mater. Sci. 7, 239 (1977).Google Scholar
36.Snyder, C. W., Mansfield, J. F., and Orr, B. G., Phys. Rev. B 46, 9551 (1992).Google Scholar
37.Okada, T., Weatherly, G. C., and McComb, D. W., J. Appl. Phys. 81, 2185 (1997).Google Scholar
38.Al-Shareef, H. N., Bellur, K. R., Auciello, O., and Kingon, A. I., Thin Solid Films 256, 73 (1995).CrossRefGoogle Scholar
39.Mullins, W. W. and Sekerka, R. F., J. Appl. Phys. 34, 323 (1963).Google Scholar
40.García-Ruiz, J. M. and Rodriguez-Navarro, A., in Evolution of Thin-Film and Surface Structure and Morphology, edited by Demczyk, B. G., Williams, E. D., Garfunkel, E., Clemens, B. M., and Cuomo, J. E. (Mater. Res. Soc. Symp. Proc. 355, Pittsburgh, PA, 1995), p. 107.Google Scholar
41.Lee, E. G., Wouters, D. J., Willems, G., and Maes, H. E., Appl. Phys. Lett. 70, 2402 (1997).Google Scholar
42.de Keijser, M., van Veldhoven, P. J., and Dormans, G. J. M., in Ferroelectric Thin Films III, edited by Tuttle, B. A., Myers, E. R., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 223.Google Scholar