Skip to main content Accessibility help

Gold nanoshell arrays-based visualized sensors of pH: Facile fabrication and high diffraction intensity

  • D.D. Men (a1), F. Zhou (a2), H.L. Li (a2), L.F. Hang (a2), X.Y. Li (a2), D.L. Liu (a2), W.P. Cai (a2), L.M. Qi (a3), L.B. Li (a4) and Y. Li (a2)...


A free standing 2D PS colloidal crystal with Au nanoshells/hydrogel composite film (CAuHCF) was fabricated by embedding a 2D PS colloidal crystal with Au nanoshells into a polyacrylic acid (PAA) hydrogel film. This CAuHCF can act as a visualized sensor with high diffraction intensity. The 2D PS colloidal crystal with Au nanoshells was prepared by depositing an Au layer on PS colloidal crystal obtained by interfacial self-assembly. The diffraction intensity of the CAuHCF was increased by about 30-fold than that of traditional 2D PS colloidal crystal/hydrogel composite film on transparent substrate due to large scattering cross section of Au shell. Such sensors based Au nanoshells array with the simple preparation process and the strong diffraction signal are promising ones for practical applications in visual detection. Additionally, with the simple preparation process and high diffraction intensity, other visualized sensors based different hydrogel matrix and the 2D PS colloidal crystal with Au nanoshells could be synthesized for monitoring various analysts.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
Contributing Editor: Edson Roberto Leite



Hide All
1. Baptista, F.R., Belhout, S.A., Giordanib, S., and Quinn, S.J.: Recent developments in carbon nanomaterial sensors. Chem. Soc. Rev. 44, 4433 (2015).
2. Zhang, H.H., Zhou, F., Liu, M., Liu, D.L., Men, D.D., Cai, W.P., Duan, G.T., and Li, Y.: Spherical nanoparticle arrays with tunable nanogaps and their hydrophobicity enhanced rapid SERS detection by localized concentration of droplet evaporation. Adv. Mater. Interfaces 2, 1500031 (2015).
3. Qu, L.L., Liu, Y.Y., He, S.H., Chen, J.Q., Liang, Y., and Li, H.T.: Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cell. Biosens. Bioelectron. 77, 292 (2016).
4. Zhang, H.H., Liu, M., Zhou, F., Liu, D.L., Liu, G.Q., Duan, G.T., Cai, W.P., and Li, Y.: Physical deposition improved SERS stability of morphology controlled periodic micro/nanostructured arrays based on colloidal templates. Small 11, 844 (2015).
5. Yan, J., Pedrosa, V.A., Simonian, A.L., and Revzin, A.: Immobilizing enzymes onto electrode arrays by hydrogel photolithography to fabricate multi-analyte electrochemical biosensors. ACS Appl. Mater. Interfaces 2, 748 (2010).
6. Zhai, D.Y., Liu, B.R., Shi, Y., Pan, L.J., Wang, Y.Q., Li, W.B., Zhang, R., and Yu, G.H.: Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7, 3540 (2013).
7. Wu, W.T., Mitra, N., Yan, E.C.Y., and Zhou, S.Q.: Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH. ACS Nano 4, 4831 (2010).
8. Li, L., Zhao, B., Long, Y., Gao, J.M., Yang, G.Q., Tung, C.H., and Song, K.: Visual detection of carbonate ions by inverse opal photonic crystal polymers in aqueous solution. J. Mater. Chem. C 3, 9524 (2015).
9. Tian, E.T., Wang, J.X., Zheng, Y.M., Song, Y.L., Jiang, L., and Zhu, D.B.: Colorful humidity sensitive photonic crystal hydrogel. J. Mater. Chem. 18, 1116 (2008).
10. Kang, J.H., Moon, J.H., Lee, S.K., Park, S.G., Jang, S.G., Yang, S., and Yang, S.M.: Thermoresponsive hydrogel photonic crystals by three-dimensional holographic lithography. Adv. Mater. 20, 3061 (2008).
11. Wang, J.Y., Cao, Y., Feng, Y., Yin, F., and Gao, J.P.: Multiresponsive inverse-opal hydrogels. Adv. Mater. 19, 3865 (2007).
12. Tian, E.T., Ma, Y., Cui, L.Y., Wang, J.X., Song, Y.L., and Jiang, L.: Color-oscillating photonic crystal hydrogel. Macromol. Rapid Commun. 30, 1719 (2009).
13. Cai, Z.Y., Natasha, L.S., Zhang, J.T., and Asher, S.A.: Two-dimensional photonic crystal chemical and biomolecular sensors. Anal. Chem. 87, 5013 (2015).
14. Zhang, J.T., Wang, L.L., Luo, J., Tikhonov, A., Kornienko, N., and Asher, S.A.: 2-D array photonic crystal sensing motif. J. Am. Chem. Soc. 133, 9152 (2011).
15. Goponenko, A.V. and Asher, S.A.: Modeling of stimulated hydrogel volume changes in photonic crystal Pb2+ sensing materials. J. Am. Chem. Soc. 127, 10753 (2005).
16. Zhang, C.J., Losego, M.D., and Braun, P.V.: Hydrogel-based glucose sensors: Effects of phenylboronic acid chemical structure on response. Chem. Mater. 25, 3239 (2013).
17. Nakayama, D., Takeoka, Y., Watanabe, M., and Kataoka, K.: Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew. Chem., Int. Ed. 42, 4197 (2003).
18. Alexeev, V.L., Sharma, A.C., Goponenko, A.V., Das, S., Lednev, I.K., Wilcox, C.S., Finegold, D.N., and Asher, S.A.: High ionic strength glucose-sensing photonic crystal. Anal. Chem. 75, 2316 (2003).
19. Zhang, C.J., Cano, G.G., and Braun, P.V.: Linear and fast hydrogel glucose sensor materials enabled by volume resetting agents. Adv. Mater. 26, 5678 (2014).
20. Asher, S.A., Alexeev, V.L., Goponenko, A.V., Sharma, A.C., Lednev, I.K., Wilcox, C.S., and Finegold, D.N.: Photonic crystal carbohydrate sensors: Low ionic strength sugar sensing. J. Am. Chem. Soc. 125, 3322 (2003).
21. Lee, Y.J., Pruzinsky, S.A., and Braun, P.V.: Glucose-sensitive inverse opal hydrogels: Analysis of optical diffraction response. Langmuir 20, 3096 (2004).
22. Alexeev, V.L., Das, S., Finegold, D.N., and Asher, S.A.: Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin. Chem. 50, 2353 (2004).
23. Cai, Z.Y., Kwak, D.H., Punihaole, D., Hong, Z.M., Velankar, S.S., Liu, X.Y., and Asher, S.A.: A photonic crystal protein hydrogel sensor for candida albicans. Angew. Chem., Int. Ed. 54, 13036 (2015).
24. Yuan, Y.X., Li, Z.L. Liu, Y., Gao, J.P., Pan, Z., and Liu, Y.: Hydrogel photonic sensor for the detection of 3-pyridinecarboxamide. Chem. Eur. J. 18, 303 (2012).
25. Zhang, B., Cai, Y.L., Shang, L.R., Wang, H., Cheng, Y., Rong, F., Gu, Z.Z., and Zhao, Y.J.: A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood. Nanoscale 8, 3841 (2016).
26. MacConaghy, K.I., Geary, C.I., Kaar, J.L., and Stoykovich, M.P.: Photonic crystal kinase biosensor. J. Am. Chem. Soc. 136, 6896 (2014).
27. Wang, J.Y., Hu, Y.D., Deng, R.H., Liang, R.J., Li, W.K., Liu, S.Q., and Zhu, J.T.: Multiresponsive hydrogel photonic crystal microparticles with inverse-opal structure. Langmuir 29, 8825 (2013).
28. Sharma, A.C., Jana, T., Kesavamoorthy, R., Shi, L., Virji, M.A., Finegold, D.N., and Asher, S.A.: A general photonic crystal sensing motif: Creatinine in bodily fluids. J. Am. Chem. Soc. 126, 2971 (2004).
29. Moshe, M.B., Alexeev, V.L., and Asher, S.A.: Fast responsive crystalline colloidal array photonic crystal glucose sensors. Anal. Chem. 78, 5149 (2006).
30. Xue, F., Meng, Z.H., Wang, F.Y., Wang, Q.H., Xue, M., and Xu, Z.B.: A 2-D photonic crystal hydrogel for selective sensing of glucose. J. Mater. Chem. A 2, 9559 (2014).
31. Zhang, J.T., Wang, L.L., Lamont, D.N., Velankar, S.S., and Asher, S.A.: Fabrication of large-area two-dimensional colloidal crystals. Angew. Chem., Int. Ed. 51, 6117 (2012).
32. Zhang, J.T., Cai, Z.Y., Kwak, D.H., Liu, X.Y., and Asher, S.A.: Two-dimensional photonic crystal sensors for visual detection of lectin concanavalin A. Anal. Chem. 86, 9036 (2014).
33. Zhang, J.T., Smith, N., and Asher, S.A.: Two-dimensional photonic crystal surfactant detection. Anal. Chem. 84, 6416 (2012).
34. Men, D.D., Zhang, H.H., Hang, L.F., Liu, D.L., Li, X.Y., Cai, W.P., Xiong, Q.H., and Li, Y.: Optical sensor based on hydrogel films with 2D colloidal arrays attached on both the surfaces: Anti-curling performance and enhanced optical diffraction intensity. J. Mater. Chem. C 3, 3659 (2015).
35. Zhang, J.T., Chao, X., Liu, X.Y., and Asher, S.A.: Two-dimensional array Debye ring diffraction protein recognition sensing. Chem. Commun. 49, 6337 (2013).
36. Li, Y., Koshizaki, N., and Cai, W.P.: Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices. Coord. Chem. Rev. 255, 357 (2011).
37. Li, Y., Duan, G.T., Liu, G.Q., and Cai, W.P.: Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique: Fabrication and applications. Chem. Soc. Rev. 42, 3614 (2013).
38. Li, C., Hong, G.S., Wang, P.W., Yu, D.P., and Qi, L.M.: Wet chemical approaches to patterned arrays of well-aligned ZnO nanopillars assisted by monolayer colloidal crystals. Chem. Mater. 21, 891 (2009).
39. Ye, X.Z. and Qi, L.M.: Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications. Nano Today 6, 608 (2011).
40. Liu, Y.D., Goebl, J., and Yin, Y.D.: Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42, 2610 (2013).
41. Cong, H.L., Yu, B., Tang, J.G., Li, Z.J., and Liu, X.S.: Current status and future developments in preparation and application of colloidal crystals. Chem. Soc. Rev. 42, 7774 (2013).
42. Gu, Z.Z., Horie, R., Kubo, S., Yamada, Y., Fujishima, A., and Sato, O.: Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index sensor. Angew. Chem., Int. Ed. 41, 1153 (2002).
43. Lee, K. and Asher, S.A.: Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 122, 9534 (2000).
44. Men, D.D., Zhou, F., Hang, L.F., Li, X.Y., Duan, G.T., Cai, W.P., and Li, Y.: Functional hydrogel film attached with 2D Au nanosphere array and its ultrahigh optical diffraction intensity as a visualized sensor. J. Mater. Chem. C 4, 2117 (2016).
45. Men, D.D., Liu, D.L., and Li, Y.: Visualized optical sensors based on two/three-dimensional photonic crystals for biochemical. Sci. Bull. 61, 1358 (2016).
46. Weissman, J.M., Sunkara, H.B., Tse, A.S., and Asher, S.A.: Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274, 959 (1996).


Type Description Title
Supplementary materials

Men supplementary material
Figures S1-S2

 Word (148 KB)
148 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed