Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-14T11:35:03.063Z Has data issue: false hasContentIssue false

Glass-forming Ability and Magnetic Properties of Nd70−xFe20Al10Cox Alloys

Published online by Cambridge University Press:  31 January 2011

G. J. Fan
Affiliation:
Institut für Festkörper- und Werkstoffurschung, Dresden, Institut für Metallische Werkstoffe, Dresden, Germany
W. Löser
Affiliation:
Institut für Festkörper- und Werkstoffurschung, Dresden, Institut für Metallische Werkstoffe, Dresden, Germany
S. Roth
Affiliation:
Institut für Festkörper- und Werkstoffurschung, Dresden, Institut für Metallische Werkstoffe, Dresden, Germany
J. Eckert
Affiliation:
Institut für Festkörper- und Werkstoffurschung, Dresden, Institut für Metallische Werkstoffe, Dresden, Germany
L. Schultz
Affiliation:
Institut für Festkörper- und Werkstoffurschung, Dresden, Institut für Metallische Werkstoffe, Dresden, Germany
Get access

Abstract

The influence of Co addition on the glass-forming ability of slowly cooled Nd70-xFe20Al10Cox alloys (0 ≤ x ≤ 10) was studied by x-ray diffraction, constant-rate heating calorimetry, and magnetic measurements. Without addition of Co, the as-cast Nd70Fe20Al10 cylinders of 3-mm diameter show a mixture of amorphous and crystalline phases after copper mold casting. Increasing the Co content promotes amorphization, and bulk amorphous specimens can be obtained for Nd60Fe20Al10Co10. No glass transition or supercooled liquid region before crystallization was observed for the bulk Nd60Fe20Al10Co10 alloy. The bulk amorphous alloy exhibits hard magnetic behavior with a remanence (Jr) of 0.09 T, a magnetization (J1500) of 0.13 T, and a coercivity (Hc) of 298 kAm−1. The Curie temperature for the as-cast Nd70-xFe20Al10Cox cylinders increases from 480 K for x =0 to 487 K for x = 10. The enhanced glass-forming ability for the Nd–Fe–Al-based alloys upon Co addition will be critically discussed with respect to classical nucleation theory and the formation of metastable ordered clusters upon solidification.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A., Mater. Sci. Eng. A 226–228, 357 (1997).CrossRefGoogle Scholar
2.Inoue, A., Mater. Trans. JIM 36, 866 (1995).CrossRefGoogle Scholar
3.Inoue, A., Nakamura, T., Sugita, T., Zhang, T., and Masumoto, T., Mater. Trans. JIM 34, 351 (1993).CrossRefGoogle Scholar
4.Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
5.Inoue, A., Nishiyama, N., and Masumoto, T., Mater. Trans. JIM 37, 181 (1996).CrossRefGoogle Scholar
6.Inoue, A., Zhang, T., and Takeuchi, A., Appl. Phys. Lett. 71, 464 (1997).CrossRefGoogle Scholar
7.He, Y., Price, C.E., Poon, S.J., and Shiflet, G.J., Philos. Mag. Lett. 70, 371 (1994).CrossRefGoogle Scholar
8.Inoue, A., Takeuchi, A., and Zhang, T., Metall. Mater. Trans. A 29, 1779 (1998).CrossRefGoogle Scholar
9.Inoue, A., Zhang, T., Takeuchi, A., and Zhang, W., Mater. Trans. JIM 37, 636 (1996).CrossRefGoogle Scholar
10.Inoue, A., Zhang, T., Zhang, W., and Takeuchi, A., Mater. Trans. JIM 37, 99 (1996).CrossRefGoogle Scholar
11.Saha, D.K., Koga, K., and Takeo, H., Nanostructured Mater. 8, 1139 (1997).CrossRefGoogle Scholar
12.Gebert, A., Eckert, J., and Schultz, L., Acta Mater. 46, 5475 (1998).CrossRefGoogle Scholar
13.Chen, L.C. and Spaepen, F., Nature (London) 336, 366 (1988).CrossRefGoogle Scholar
14.Greer, A.L., Science 267, 1947 (1995).CrossRefGoogle Scholar
15.Fecht, H.J., Mater. Trans. JIM 36, 777 (1995).CrossRefGoogle Scholar
16.Inoue, A., Zhang, T., and Masumoto, T., J. Non-Cryst. Solids 156–158, 473 (1993).CrossRefGoogle Scholar
17.Christian, J.W., The Theory of Transformation in Metals and Alloys (Pergamon Press, Oxford, United Kingdom, 1975), pp. 418476.Google Scholar
18.Herlach, D.M., Mater. Sci. Eng. R 12, 177 (1994).CrossRefGoogle Scholar
19.Turnbill, D., Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
20.Johnson, W.L., Mater. Sci. Forum 35, 225 (1996).Google Scholar
21.Fan, G.J., Löser, W., Roth, S., Eckert, J., and Schultz, L., Appl. Phys. Lett. 75, 2984 (1999).CrossRefGoogle Scholar
22.Siratori, K., Nagayama, K., Ino, H., Saito, N., and Nakagawa, Y., J. Magn. Magn. Mater. 83, 341 (1990).CrossRefGoogle Scholar
23.Ding, J., Li, Y., and Wang, X.Z., J. Phys. D: Appl. Phys. 32, 713 (1999).CrossRefGoogle Scholar
24.Alben, R., Becker, J.J., and Chi, M.C., J. Appl. Phys. 49, 1653 (1978).CrossRefGoogle Scholar
25.Schrefl, T., Kronmüller, H., and Fidler, J., J. Magn. Magn. Mater. 127, L273 (1993).CrossRefGoogle Scholar
26.Gaskell, P.H., Topics Appl. Phys. 53, 5 (1983).CrossRefGoogle Scholar