Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T14:33:31.983Z Has data issue: false hasContentIssue false

Glass transformation temperature and stability of tellurite glasses

Published online by Cambridge University Press:  31 January 2011

Raouf El-Mallawany
Affiliation:
Physics Department, Faculty of Science, Menofia University, Egypt
Get access

Abstract

The glass transformation (Tg) and onset crystallization temperatures (Tx) of (100 – x) TeO2–(x)V2O5, (x = 10, 35, and 50 mol%) glasses were measured in the temperature range 300–800 K by differential scanning calorimetry at different heating rates. From the variation of the heating rate, the glass transition activation energy was calculated by different methods. The glass stabilization range S = TxTg was calculated for the whole glass series. Quantitative analysis of the glass transformation temperature was carried out using the calculated number of bonds per unit volume and oxygen packing density.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dimitriev, Y., Marinov, M., and Gatev, E., C.R. Acad. Bulg. Sci. 26, 675 (1973).Google Scholar
Flynn, B., Owen, A., and Robertson, J., in Proc.7th Int. Conf. Amorphous and Liquid Semiconductors (CICL, University of Edinburgh, Edinburgh, Scotland, 1977), p. 678.Google Scholar
Dhawan, V., Mansingh, A., and Sayer, M., J. Non-Cryst. Solids 51, 87 (1982)CrossRefGoogle Scholar
Hirashima, H., Ide, M., and Youshida, T., J. Non-Cryst. Solids 86, 327 (1986).Google Scholar
Hampton, R., Hong, W., Saunders, G., and El-Mallawany, R., J. Non-Cryst. Solids 94, 307 (1987).CrossRefGoogle Scholar
Hampton, R., Hong, W., Saunders, G., and El-Mallawany, R., Phys. Chem. Glasses 29, 100 (1988).Google Scholar
El-Mallawany, R., Mater. Chem. Phys. 37, 376 (1994).CrossRefGoogle Scholar
Montani, R., Robledo, A., and Bazan, J., Mater. Chem. Phys. 53, 80 (1998).Google Scholar
Sidky, M., El-Mallawany, R., Nakhala, R., El-Moneim, A., J. Non-Cryst. Solids 215, 75 (1997).Google Scholar
Sidky, M., El-Mallawany, R., Nakhala, R., El-Moneim, A., Phys. Status Solidi (a) 159, 397 (1997).3.0.CO;2-0>CrossRefGoogle Scholar
El-Mallawany, R., J. Mater. Res. 7, 224 (1992).CrossRefGoogle Scholar
El-Mallawany, R., J. Mater. Sci. Mater. Electron. 6, 1 (1995).CrossRefGoogle Scholar
El-Mallawany, R., Phys. Status Solidi (a) 117, 439 (2000).Google Scholar
El-Mallawany, R., Mater. Chem. Phys. 53, 93 (1998); (b)Google Scholar
El-Mallawany, R., Mater. Chem. Phys. 60, 103 (1999);Google Scholar
El-Mallawany, R., Tellurite Glasses Handbook, Physical Properties and Data (CRC Press LLC, Boca Raton, FL, 2002), p. 540.Google Scholar
Komatsu, T. and Mohri, H., Phys. Chem. Glasses. 40, 257 (1999).Google Scholar
Chowdari, B. and Kumari, P., Solid State Ionics 86–88, 521 (1996).CrossRefGoogle Scholar
Jayasinghe, G., Dissanayake, M., Careem, M., and Souquent, J., J. Solid State Ionics 93, 291 (1997).CrossRefGoogle Scholar
Lasocka, M., Mater. Sci. Eng. 23, 173 (1979).Google Scholar
Kissinger, H., J. Res. Nat. Bur. Stand. 57, 217 (1956).Google Scholar
Chen, H., J. Non-Cryst. Solids 27, 257 (1978).CrossRefGoogle Scholar
Shelby, J., J. Non-Cryst. Solids 4, 111 (1979).CrossRefGoogle Scholar
Colemenero, J. and Barandiaran, J., J. Non-Cryst. Solids 30, 263 (1978).CrossRefGoogle Scholar
Moynihan, C., Eastead, A., Wilder, J., and Tucker, J., J. Phys. Chem. 78, 2673 (1974).CrossRefGoogle Scholar
Bridge, B. and Higazy, A., Phys. Chem. Glasses 27, 1 (1986).Google Scholar
Sakida, S., Hayakawa, S., and Yoko, T., J. Phys. Condens Matter 12, 2579 (2000).CrossRefGoogle Scholar