Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T07:11:41.664Z Has data issue: false hasContentIssue false

Germanium segregation in the Co/SiGe/Si(001) thin film system

Published online by Cambridge University Press:  31 January 2011

Peter T. Goeller
Affiliation:
Department of Physics and Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
Boyan I. Boyanov
Affiliation:
Department of Physics and Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
Dale E. Sayers
Affiliation:
Department of Physics and Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
Robert J. Nemanich*
Affiliation:
Department of Physics and Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
Alline F. Myers
Affiliation:
Microanalysis & Surface Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Eric B. Steel
Affiliation:
Microanalysis & Surface Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
*
a)Address all correspondence to this author. e-mail: Robert Nemanich@ncsu.edu
Get access

Abstract

Cobalt disilicide contacts to silicon–germanium alloys were formed by direct deposition of pure cobalt metal onto silicon–germanium films on Si(001) substrates. Segregation of germanium was observed during the reaction of the cobalt with the silicon–germanium alloy. The nature of the Ge segregation was studied by transmission electron microscopy, energy dispersive spectroscopy, and x-ray diffraction. In the case of cobalt films deposited onto strained silicon–germanium films, the Ge segregation was discovered to be in the form of Ge-enriched Si1−xGex regions found at the surface of the film surrounding CoSi and CoSi2 grains. In the case of cobalt films deposited onto relaxed silicon–germanium films, the Ge segregation was dependent on formation of CoSi2. In samples annealed below 800 °C, where CoSi was the dominant silicide phase, the Ge segregation was similar in form to the strained Si1−xGex case. In samples annealed above 800 °C, where CoSi2 was the dominant silicide phase, the Ge segregation was also in the form of tetrahedron-shaped, Ge-enriched, silicon–germanium precipitates, which formed at the substrate/silicon– germanium film interface and grew into the Si substrate. A possible mechanism for the formation of these precipitates is presented based on vacancy generation during the silicidation reaction coupled with an increased driving force for Ge diffusion due to silicon depletion in the alloy layer.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Xiao, X., Sturm, J.C., Rarihar, S.R., Lyon, S.A., Meyerhofer, D., Palfrey, S., and Shallcross, F.V., IEEE Electron. Dev. Lett. 14(4), 199 (1993).CrossRefGoogle Scholar
2.Kuznetsov, V.I., Veen, R.v., Drift, E.v.d., Werner, K., Verbruggen, A.H., and Radelaar, S., J. Vac. Sci. Technol. B 13, 2892 (1995).CrossRefGoogle Scholar
3.Sidek, R.M., Evans, A.G.R, and Kubiak, R.A., Electron. Lett. 32, 269 (1996).CrossRefGoogle Scholar
4.Mastrapasqua, M., King, C.A., Smith, P.R., and Pinto, M.R., IEEE Trans. Electron Devices 43, 1671 (1996).CrossRefGoogle Scholar
5.Koester, S.J., Chu, J.O., and Groves, R.A., Electron. Lett. 35, 86 (1999).CrossRefGoogle Scholar
6.Ridgway, M.C., Elliman, R.G., Hauser, N., Baribeau, J-M., and Jackman, T.E., in Advanced Metallization and Processing for Semiconductor Devices and Circuits—II, edited by Katz, A., Murarka, S.P., Nissim, Y.I., and Harper, J.M.E (Mater. Res. Soc. Symp. Proc. 260, Pittsburgh, PA, 1992), pp. 857861.Google Scholar
7.Lin, F., Sarcona, G., Hatalis, M.K., Cserhati, A.F., Austin, E., and Greve, D.W., Thin Solid Films 250, 20 (1994).CrossRefGoogle Scholar
8.Wang, Z., Aldrich, D.B., Chen, Y.L., Sayers, D.E., and Nemanich, R.J., Thin Solid Films 270, 555 (1995).CrossRefGoogle Scholar
9.Qi, W-J., Li, B-Z., Huang, W-N., Gu, Z-G., Lu, H-Q., Zhang, X-J., Zhang, M., Dong, G-S., Miller, D.C., and Aitken, R.G., J. Appl. Phys. 77, 1086 (1995).CrossRefGoogle Scholar
10.Glück, M., Schüppen, A., Rösler, M., Heinrich, W., Hersener, J., König, U., Yam, O., Cytermann, C., and Eizenberg, M., Thin Solid Films 270, 549 (1995).CrossRefGoogle Scholar
11.Schäffer, C. and Rodewald, M., J. Cryst. Growth 165, 61 (1996).CrossRefGoogle Scholar
12.Jin, S., Bender, H., Donaton, R.A., Maex, K., Vantomme, A., Langouche, G., Amour, A.S., and Sturm, J.C., in Structure and Evolution of Surfaces, edited by Cammarata, R.C., Chason, E.H., Einstein, T.L., and Williams, E.D. (Mater. Res. Soc. Symp. Proc. 440, Warrendale, PA, 1997), pp. 481486.Google Scholar
13.Goeller, P.T., Boyanov, B.I., Sayers, D.E., and Nemanich, R.J., Nucl. Instrum. Methods Phys. Res. B 133, 84 (1997).CrossRefGoogle Scholar
14.Goeller, P.T., Boyanov, B.I., Sayers, D.E., and Nemanich, R.J., Thin Solid Films 320, 206 (1998).Google Scholar
15.Thompson, R.D., Tu, K.N., Angillelo, J., Delage, S., and Iyer, S.S., J. Electrochem. Soc. 135, 3161 (1988).CrossRefGoogle Scholar
16.Liou, H.K., Wu, X., Gennser, U., Kesan, V.P., Iyer, S.S., Tu, K.N., and Yang, E.S., Appl. Phys. Lett. 60, 577 (1992).CrossRefGoogle Scholar
17.Buxbaum, A., Eizenberg, M., Raizmann, A., and Schaffler, F., in Phase Transformation Kinetics in Thin Films, edited by Chen, M., Thompson, M.O., Schwarz, R.B., and Libera, M. (Mater. Res. Soc. Symp. Proc. 230, Pittsburgh, PA, 1992), pp. 151156.Google Scholar
18.Wang, P.J., Chang, C-A., Meyerson, B.S., Chu, J.O., and Tejwani, M.J., in Advanced Metallization and Processing for Semiconductor Devices and Circuits—II, edited by Katz, A., Murarka, S.P., Nissim, Y.I., and Harper, J.M.E (Mater. Res. Soc. Symp. Proc. 260, Pittsburgh, PA, 1992), pp. 863868.Google Scholar
19.Thomas, O., D'Heurle, F.M., Delage, S., and Scilla, G., Appl. Surf. Sci. 38, 27 (1989).CrossRefGoogle Scholar
20.Thomas, O., Delage, S., d'Heurle, F.M., and Scilla, G., Appl. Phys. Lett. 54, 228 (1989).CrossRefGoogle Scholar
21.Aldrich, D.B., Chen, Y.L., Sayers, D.E., Nemanich, R.J., Ashburn, S.P., and Öztürk, M.C., J. Mater. Res. 10, 2849 (1995).Google Scholar
22.Aubry, V., Meyer, F., Laval, R., Clerc, C., Warren, P., and Dutartre, D., in Silicides, Germanides, and Their Interfaces, edited by Fathauer, R.W., Mantl, S., Schowalter, L.J., and Tu, K.N.. (Mater. Res. Soc. Symp. Proc. 320, Pittsburgh, PA, 1994), pp. 299– 304.Google Scholar
23.Wang, Z., Aldrich, D.B., Nemanich, R.J., and Sayers, D.E., J. Appl. Phys. 82, 2342 (1997).CrossRefGoogle Scholar
24.Goeller, P.T., Boyanov, B.I., Sayers, D.E., and Nemanich, R.J., in Structure and Evolution of Surfaces, edited by Cammarata, R.C., Chason, E.H., Einstein, T.L., and Williams, E.D.. (Mater. Res. Soc. Symp. Proc. 440, Warrendale, PA, 1997), pp. 487492.Google Scholar
25.Boyanov, B.I., Goeller, P.T., Sayers, D.E., and Nemanich, R.J., J. Appl. Phys. 86, 1355 (1999).CrossRefGoogle Scholar
26.Wald, F. and Michalik, S.J., J. Less-Common Met. 24, 277 (1971).CrossRefGoogle Scholar
27.Ahn, C-G., Kang, H-S., Kwon, Y-K., and Kang, B., Jpn. J. Appl. Phys. 37(3B), 1316 (1998).Google Scholar
28.Aldrich, D.B., Chen, Y.L., Sayers, D.E., and Nemanich, R.J., J. Appl. Phys. 77, 5107 (1995).Google Scholar
29.Powell, A.R., Iyer, S.S., and LeGoues, F.K., Appl. Phys. Lett. 64, 1856 (1994).CrossRefGoogle Scholar
30.Powell, A.R., Iyer, S.S., and LeGoues, F.K., in Defect-Interface Interactions, edited by Kram, E.P., King, A.H., Mills, M.J., Sands, T.D., and Vitak, V.. (Mater. Res. Soc. Symp. Proc. 319, Pittsburgh, PA, 1994), pp. 141146.Google Scholar
31.Kesan, V.P., Subbanna, S., Restle, P.J., Tejwani, M.J., Aitken, J.M., Iyer, S.S., and Ott, J.A., Int. Electron Devices Meet. Tech. Dig. 2528 (1991).Google Scholar
32.Fenner, D.B., Biegelsen, D.K., and Bringans, R.D., J. Appl. Phys. 66, 419 (1989).CrossRefGoogle Scholar
33.Herzog, H-J., in Properties of Strained and Relaxed Silicon Germanium, edited by Kasper, E. (INSPEC, London, 1995), pp. 4952.Google Scholar
34.Baker, S.P. and Arzt, E., in Properties of Strained and Relaxed Silicon Germanium, edited by Kasper, E. (INSPEC, London, 1995), pp. 6769.Google Scholar
35.Landolt, H. and Börnstein, R., Numerical Data and Functional Relationships in Science and Technology, New Series Group III, (Springer, Berlin, 1982), Vol. 17a.Google Scholar
36.Fiori, C.E., Swyt, C.R., and Myklebust, R.L., DTSA: Desk Top Spectrum Analyzer and X-ray Data Base (National Institute of Standards and Technology, Gaithersburg, MD, 1996).Google Scholar
37.Williams, D.D. and Carter, C.B., Transmission Electron Microscopy (Plenum Press, New York, 1996), Vol. IV, p. 176.CrossRefGoogle Scholar
38.Hull, R., in Properties of Strained and Relaxed Silicon Germanium, edited by Kasper, E. (INSPEC, London, 1995), pp. 2845.Google Scholar
39.Boyanov, B.I., Goeller, P.T., Sayers, D.E., and Nemanich, R.J., J. Appl. Phys. 84, 4285 (1998).CrossRefGoogle Scholar
40. JCPDS-ICDD PDF-2 database (1989).Google Scholar
41.Brongersma, S.H., Castell, M.R., Perovic, D.D., and Zinke-Allmang, M., J. Vac. Sci. Tech. B 16, 2188 (1998).CrossRefGoogle Scholar
42.Brongersma, S.H., Castell, M.R., Perovic, D.D., and Zinke-Allmang, M., Phys. Rev. Lett. 80, 3795 (1998).CrossRefGoogle Scholar
43.Comrie, C.M. and McLeod, J.E., Crucial Issues in Semiconductor Materials and Processing Technologies, edited by Coffa, S., Priolo, F., Rimini, E., and Poate, J.M.. (Kluwer, Dordrecht, 1992).Google Scholar
44.Gurp, G.J.v., Weg, W.F.v.d., and Sigurd, D., J. Appl. Phys. 49, 4011 (1978).CrossRefGoogle Scholar
45.Lim, B.S., Ma, E., Nicolet, M-A., and Natan, M., J. Appl. Phys. 61, 5027 (1987).CrossRefGoogle Scholar
46.Comrie, C.M., Nucl. Instrum. Methods Phys. Res. B 118, 119 (1996).CrossRefGoogle Scholar
47.Vdovin, V.I., Mil'vidskii, M.G., Yugova, T.G., Lyutovich, K.L., and Saidov, S.M., J. Cryst. Growth 141, 109 (1994).Google Scholar
48.Wen, D.S., Smith, P.L., Osburn, C.M., and Rozgonyi, G.A., Appl. Phys. Lett. 51, 1182 (1987).CrossRefGoogle Scholar
49.Herner, S.B., Krishnamoorthy, V., and Jones, K.S., Appl. Surf. Sci. 103, 377 (1996).CrossRefGoogle Scholar
50.Honeycutt, J.W., Effects of Ti and Co Silicidation on Point Defects, Dopant Diffusion, and Ion Implantation Damage In Silicon (North Carolina State University, Raleigh, NC, 1992).Google Scholar
51.Hu, S.M., Appl. Phys. Lett. 51, 308 (1987).CrossRefGoogle Scholar
52.Vdovin, V.I., Lyutovich, K.L., Mil'vidskii, M.G., Jsaidov, S.M., and Yugova, T.G., Sov. Phys. Crystallogr. 37, 253 (1992).Google Scholar
53.Eaglesham, D.J., Maher, D.M., Kvam, E.P., Bean, J.C., and Humphreys, C.J., Phys. Rev. Lett. 62, 187 (1989).CrossRefGoogle Scholar
54.Eaglesham, D.J., Kvam, E.P., Maher, D.M., Humphreys, C.J., and Bean, J.C., Philos. Mag. A 59, 1059 (1989).CrossRefGoogle Scholar
55.Hirth, J.P. and Lothe, J., Theory of Dislocations, 2nd ed. (Krieger Publishing Company, Malabar, 1982).Google Scholar
56.Walle, G.F.A.V.D, Ijzensoorn, L.J.V, Gorkum, A.A.V, Heuvel, R.A.V.D, Theunissen, A.M.L, and Gravesteijn, D.J., Thin Solid Films 183, 183 (1989).CrossRefGoogle Scholar
57.McVay, G.L. and Du, A.R.Charme, Phys. Rev. B 9, 627 (1974).CrossRefGoogle Scholar