Skip to main content Accessibility help
×
Home

Gas-phase particle size distributions and lead loss during spray pyrolysis of (Bi,Pb)–Sr–Ca–Cu–O

  • Abhijit S. Gurav (a1), Toivo T. Kodas (a1), Jorma Joutsensaari (a2), Esko I. Kauppincn (a2) and Riitta Zilliacus (a3)...

Abstract

Gas-phase particle size distributions and lead loss were measured during formation of (Bi,Pb)-Sr-Ca-Cu-O and pure PbO particles by spray pyrolysis at different temperatures. A differential mobility analyzer (DMA) in conjunction with a condensation particle counter (CPC) was used to monitor the gas-phase particle size distributions, and a Berner-type low-pressure impactor was used to obtain mass size distributions and size-classified samples for chemical analysis. For (Bi,Pb)-Sr-Ca-Cu-O, as the processing temperature was raised from 200 to 700 °C, the number average particle size decreased due to metal nitrate decomposition, intraparticle reactions forming mixed-metal oxides and particle densification. The geometric number mean particle diameter was 0.12 μm at 200 °C and reduced to 0.08 and 0.07 μm, respectively, at 700 and 900 °C. When the reactor temperature was raised from 700 and 800 °C to 900 °C, a large number (∼107 no./cm3) of new ultrafine particles were formed from PbO vapor released from the particles and the reactor walls. Particles made at temperatures up to 700 °C maintained their initial stoichiometry over the whole range of particle sizes monitorcd; however, those made at 800 °C and above were heavily depleted in lead in the size range 0.5–5.0 μm. The evaporative losses of lead oxide from (Bi,Pb)-Sr-Ca-Cu-O particles were compared with the losses from PbO particles to gain insight into the pathways involved in lead loss and the role of intraparticle processes in controlling it.

Copyright

Corresponding author

a)Author to whom correspondence should be addressed.

References

Hide All
1Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. W., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).
2Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).
3Sheng, Z. Z. and Hermann, A. M., Nature (London) 332, 55 (1988).
4Ward, T. L., Lyons, S. W., Kodas, T. T., Brynestad, J., Kroeger, D. M., and Hsu, H., Physica C 200, 31 (1992).
5Tohge, N., Tatsumisago, M., Minami, T., Okuyama, K., Arai, K., Inada, Y., and Kousaka, Y., J. Mater. Sci.: Materials in Electronics 1, 46 (1990).
6Tripathi, R. B. and Johnson, D. W. Jr., Mater. Lett. 10, 118 (1990).
7Sunshine, S. A., Siegriest, T., Schneemyer, L. F., Murphy, L. F., Cava, R. J., Batlogg, B., R.B. van Dover, Fleming, R. M., Glarum, S. H., Nakahara, S., Zahurak, S. M., Waszczak, J. V., Marshall, J. H., Marsh, P., Rupp, L. W. Jr., and Peck, W. F., Phys. Rev. B 38, 893 (1988).
8Takano, A., Yoshimoto, M., and Koinuma, H., Appl. Phys. Lett. 55, 798 (1989).
9Ramakrishna, B. L., Barry, J. C., Iqbal, Z., Ong, E. W., Bose, A., and Eckhardt, H., Physica C 158, 203 (1989).
10Chandler, C. D., Powell, Q., Hampden-Smith, M.J., and Kodas, T. T., J. Mater. Chem. 3, 775 (1993).
11Nobumsa, H., Shimizu, K., Kitano, Y., and Kawai, T., Jpn. J. Appl. Phys. 27, L1669 (1988).
12Xiong, Y., Lyons, S. W., Ward, T. L., Kodas, T. T., and Pratsinis, S.E., J. Aerosol. Sci. 23, S815 (1992).
13Lyons, S. W., Xiong, Y., Ward, T. L., Kodas, T. T., and Pratsinis, S. E., J. Mater. Res. 7, 3333 (1992).
14Berner, A. and Lurzer, C., J. Phys. Chem. 84, 2079 (1980).
15Hitzenberger, R. and Husar, R. B., Atmos. Environ. 18, 449 (1984).
16Horvath, H., Kreiner, I., and Norek, C., J. Aerosol Sci. 18, 817 (1987).
17Hinds, W. C., Aerosol Technology (John Wiley and Sons, New York, 1982).
18Liu, B. Y. H., Pui, D. Y. H., Rubow, K. L., and Szymanski, W. W., Ann. Occup. Hyg. 29, 251 (1985).
19Adachi, M., Okuyama, K., Moon, S. W., and Seinfeld, J. H., Aerosol Sci. Technol. 12, 225 (1990).
20Koch, W., Lodding, H., Molter, W., and Munzinger, F., Staub-Reinhaltung der Luft 48, 341 (1988).
21Kauppinen, E. I. and Pakkanen, T. A., Environ. Sci. Technol. 2, 1811 (1990).
22Billamo, R. E. and Kauppinen, E. I., Aerosol Sci. Technol. 14, 33 (1991).
23Gurav, A. S., Ward, T. L., Kodas, T. T., Brynestad, J., Kroeger, D. M., and Hsu, H., in Superconductor Engineering, edited by Mensah, T.O. (AIChE Symp. Series, No. 288, 1992), Vol. 88, p. 64.
24Gurav, A. S., Kodas, T. T., Kauppinen, E. I., Joutsensaari, J., and Zilliacus, R., NanoStruct. Mater. 4, 583 (1994).
25Chadda, S., Ward, T. L., Kodas, T. T., Ott, K., and Kroeger, D. M., J. Aerosol Sci. 22, 601 (1991).
26Gurav, A., Kodas, T., Pluym, T., and Xiong, Y., Aerosol Sci. Technol. 19, 411 (1993).

Gas-phase particle size distributions and lead loss during spray pyrolysis of (Bi,Pb)–Sr–Ca–Cu–O

  • Abhijit S. Gurav (a1), Toivo T. Kodas (a1), Jorma Joutsensaari (a2), Esko I. Kauppincn (a2) and Riitta Zilliacus (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed