Skip to main content Accessibility help

Future of nanoindentation in archaeometry

  • Nadimul Haque Faisal (a1), Rehan Ahmed (a2), Saurav Goel (a3) and Graham Cross (a4)


This review aims to consolidate scarce literature on the use of modern nanomechanical testing technique like instrumented nanoindentation in the field of archaeometry materials research. The review showcase on how can the nanoindentation tests provide valuable data about mechanical properties which, in turn, relate to the evolution of ancient biomaterials as well as human history and production methods. This is particularly useful when the testing is limited by confined volumes and small material samples (since the contact size is in the order of few microns). As an emerging novel application, some special considerations are warranted for characterization of archaeometry materials. In this review, potential research areas relating to how nanoindentation is expected to benefit and help improve existing practices in archaeometry are identified. It is expected that these insights will raise awareness for use of nanoindentation at various world heritage sites as well as various museums.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.



Hide All
1.Ryzewski, K., Sheldon, B.W., Alcock, S.E., Mankin, M., Vasudevan, S., and Sinnott-Armstrong, N.: Multiple assessments of local properties, production, and performance in metal objects: An experimental case study from Petra. Jordan. Archaeol. Anthropol. Sci. 3, 173 (2011).
2.ISO 14577-1, -2, -3, -4 Metallic Materials Instrumented Indentation Tests for Hardness and Material Properties Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036.
3.ASTM E2546-07: Standard Practice for Instrumented Indentation Testing (ASTM International, West Conshohocken, Pennsylvania, 2007).
4.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Sci. 7, 1564 (1992).
5.Erickson, G.M., Krick, B.A., Hamilton, M., Bourne, G.R., Norell, M.A., Lilleodden, E., and Sawyer, W.G.: Complex dental structure and wear biomechanics in hadrosaurid dinosaurs. Science 338, 98 (2012).
6.Janko, M., Zink, A., Gigler, A.M., Heckl, W.M., and Stark, R.W.: Nanostructure and mechanics of mummified type I collagen from the 5300-year-old Tyrolean Iceman. Proc. R. Soc. B 277, 2301 (2010).
7.Northover, P., Northover, S., and Wilson, A.: Microstructures of ancient and historic silver. In Metal 2013, 16–20 September 2013, (International Council of Museums ICOM-CC, 253, Edinburgh, 2013); pp. 253260.
8.Patzke, N., Levin, A.A., Shakhverdova, I.P., Reibold, M., Kochmann, W., Paufler, P., and Meyer, D.C.: Nanostructured ancient Damascus blades, DMG (2008). (abstract no. 208, session S17). Available at:
9.Kochmann, W., Reibold, M., Goldberg, R., Hauffe, W., Levin, A.A., Eyer, D.C., Stephan, T., Müller, H., Belger, A., and Paufler, P.: Nanowires in ancient Damascus steel. J. Alloys Compd. 372, L15L19 (2004).
10.Li, Y., Wu, T., Liao, L., Liao, C., Zhang, L., Chen, G., and Pan, C.: Techniques employed in making ancient thin-walled bronze vessels unearthed in Hubei Province, China. Appl. Phys. A: Mater. Sci. Process. 111, 913 (2013).
11.Chakoumakos, B.C., Oliver, W.C., Lumpkin, G.R., and Ewing, R.C.: Hardness and elastic modulus of zircon as a function of heavy-particle irradiation dose: I. In situ α-decay event damage. Radiat. Eff. Defects Solids 118, 393 (1991).
12.Lerner, H., Du, X., Costopoulos, A., and Ostoja-Starzewski, M.: Lithic raw material physical properties and use-wear accrual. J. Archaeol. Sci. 34, 711 (2007).
13.Sanson, G.D., Kerr, S.A., and Gross, K.A.: Do silica phytoliths really wear mammalian teeth? J. Archaeol. Sci. 34, 526 (2007).
14.Riede, F. and Wheeler, J.M.: Testing the ‘Laacher See Hypothesis’: Tephra as dental abrasive. J. Archaeol. Sci. 36, 2384 (2009).
15.Manning, P.L., Margetts, L., Johnson, M.R., Withers, P.J., Sellers, W.I., Falkingham, P.L., Mummery, P.M., Barrett, P.M., and Raymont, D.R.: Biomechanics of dromaeosaurid dinosaur claws: Application of X-ray microtomography, nanoindentation and finite element analysis. Anat. Rec. 292, 1397 (2009).
16.Salvant, J., Barthel, E., and Menu, M.: Nanoindentation and the micromechanics of Van Gogh oil paints. Appl. Phys. A: Mater. Sci. Process. 104, 509 (2011).
17.Olesiak, S.E., Oyen, M.L., Sponheimer, M., Eberle, J.J., and Ferguson, V.L.: Ultrastructural mechanical and material characterization of fossilized bone. Mater. Res. Soc. Symp. Proc. 975, 0975-DD03-09 (2006).
18.Olesiak, S.E., Sponheimer, M., Eberle, J.J., Oyen, M.L., and Ferguson, V.L.: Nanomechanical properties of modern and fossil bone. Palaeogeogr., Palaeoclimatol., Palaeoecol 289, 25 (2010).
19.Faisal, N.H., Ahmed, R., and Reuben, R.L.: Indentation testing and its acoustic emission response: Applications and emerging trends. Int. Mater. Rev. 56, 98 (2011).
20.Oliver, W.C. and Pharr, G.M.: Nanoindentation in materials research; past, present, and future. MRS Bull. 35, 897 (2010).
21.Tabor, D.: The Hardness of Metals (Oxford Clarendon Press, Oxford, England, 1951); pp. 1943.
22.Mukhopadhyay, N.K. and Paufler, P.: Micro- and nanoindentation techniques for mechanical characterisation of materials. Int. Mater. Rev. 51, 209 (2006).
23.VanLandingham, M.R.: Review of instrumented indentation. J. Res. Natl. Inst. Stand. Technol. 108, 249 (2003).
24.Fisher-Cripps, A.C.: Nanoindentation (Springer, New York, 2002); p. 39.
25.Hill, R.: The Mathematical Theory of Plasticity (Oxford Clarendon Press, Oxford, England, 1950); p. 14.
26.Lawn, B.R. and Wilshaw, R.: Review-indentation fracture: Principles and applications. J. Mater. Sci. 10, 1049 (1975).
27.Lawn, B.R. and Marshall, D.B.: Hardness, toughness, and brittleness: An indentation analysis. J. Am. Ceram. Soc. 62, 347 (1979).
28.Oyen, M.L.: Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86, 5625 (2006).
29.Pethicai, J.B., Hutchings, R., and Oliver, W.C.: Hardness measurement at penetration depths as small as 20 nm. Philos. Mag. A 48, 593 (1983).
30.Goel, S., Cross, G., Stukowski, A., Gamsjäger, E., Beake, B., and Agrawal, A.: Designing nanoindentation simulation studies by appropriate indenter choices: Case study on single crystal tungsten. Comput. Mater. Sci. 152, 196 (2018).
31.Fischer-Cripps, A.C.: Nanoindentation, 2nd ed. (Springer-Verlag, New York, 2002); p. 39.
32.Suresh, S. and Giannakopoulos, A.: A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 46, 5755 (1998).
33.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 1 (2004).
34.Fischer-Cripps, A.C.: Introduction to Contact Mechanics, 2nd ed. (Springer US, 2007); pp. 77, 175.
35.Johnson, K.L.: Contact Mechanics (Cambridge University Press, England, 1985); p. 84.
36.Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).
37.Pharr, G.M., Strader, J.H., and Oliver, W.C.: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24, 653 (2009).
38.NanoBlitz 4D: Available at: (accessed September 5, 2017).
39.Jiroušek, O.: Nanoindentation in Materials Science (IntechOpen Limited, London, 2012); p. 259.
40.Bushby, A.J., Ferguson, V.L., and Boyde, A.: Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J. Mater. Res. 19, 249 (2004).
41.Granke, M., Coulmier, A., Uppuganti, S., Gaddy, J.A., Does, M.D., and Nyman, J.S.: Insights into reference point indentation involving human cortical bone: Sensitivity to tissue anisotropy and mechanical behavior. J. Mech. Behav. Biomed. Mater. 37, 174 (2014).
42.Bembey, A.K., Oyen, M.L., Bushby, A.J., and Boyde, A.: Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos. Mag. 86, 5691 (2006).
43.Nalla, R.K., Balooch, M., Ager, J.W. III, Kruzic, J.J., Kinney, J.H., and Ritchie, R.O.: Effects of polar solvents on the fracture resistance of dentin: Role of water hydration. Acta Biomater. 1, 31 (2005).
44.Angker, L. and Swain, M.V.: Nanoindentation: Application to dental hard tissue investigations. J. Mater. Res. 21, 1893 (2006).
45.Dudíková, M., Kytýr, D., Doktor, T., and Jiroušek, O.: Monitoring of material surface polishing procedure using confocal microscope. Chem. Listy 105, 790 (2011).
46.Bhushan, B., Tang, W., and Ge, S.: Nanomechanical characterization of skin and skin cream. J. Microsc. 240, 135 (2010).
47.Crichton, M.L., Chen, X., Huang, H., and Kendall, M.A.F.: Elastic modulus and viscoelastic properties of full thickness skin characterised at micro scales. Biomaterials 34, 2087 (2013).
48.Reibold, M., Paufler, P., Levin, A.A., Kochmann, W., Pätzke, N., and Meyer, D.C.: Materials: Carbon nanotubes in an ancient Damascus sabre. Nature 444, 286 (2006).
49.Borrero-Lopez, O., Pajares, A., Constantino, P.J., and Lawn, B.R.: A model for predicting wear rates in tooth enamel. J. Mech. Behav. Biomed. Mater. 37, 226 (2014).
50.Ungar, P. and Sponheimer, M.: The diets of early hominins. Science 334, 190 (2011).
51.Lawn, B.R. and Cook, R.F.: Probing material properties with sharp indenters: A retrospective. J. Mater. Sci. 47, 1 (2012).
52.Lange, J., Luisier, A., Schedin, E., Ekstrand, G., and Hult, A.: Development of scratch tests for pre-painted metal sheet and the influence of paint properties on the scratch resistance. J. Mater. Process. Technol. 86, 300 (1999).
53.Wai, S.W.: Rapid Assessment of Paint Coatings by Micro and Nano Indentation Methods. Ph.D. thesis, School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, 2013. Available at:
54.Brand, R.A.: Biographical sketch: Julius Wolff, 1836–1902. Clin. Orthop. Relat. Res. 468, 1047 (2010).
55.Wolfram, U. and Schwiedrzik, J.: Post-yield and failure properties of cortical bone. BoneKEy Rep. 5, 829 (2016).
56.Schwiedrzik, J., Raghavan, R., Bürki, A., LeNader, V., Wolfram, U., Michler, J., and Zysset, P.: In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone. Nat. Mater. 13, 740 (2014).
57.Mirzaali, M.J., Schwiedrzik, J.J., Thaiwichai, S., Best, J.P., Michler, J., Zysset, P.K., and Wolfram, U.: Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone 93, 196 (2016).
58.Anseth, K.S., Bowman, C.N., and Brannon-Peppas, L.: Mechanical properties of hydrogels and their experimental determination. Biomaterials 17, 1647 (1996).
59.Faisal, N.H. and Ahmed, R.: A review of patented methodologies in instrumented indentation residual stress measurements. Recent Pat. Mech. Eng. 4, 138 (2011).
60.Yao, H., Xie, Z., He, C., and Dao, M.: Fracture mode control: A bio-inspired strategy to combat catastrophic damage. Sci. Rep. 5, 8011 (2015).
61.Fatima, A. and Mativenga, P.T.: On the comparative cutting performance of nature-inspired structured cutting tool in dry cutting of AISI/SAE 4140. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 231, 1941 (2017).
62.Four student-designed, nature-inspired transportation solutions: Available at: (accessed August 20, 2017).
63.Research showcase on bioinspired design: Available at: (accessed August 20, 2017).
64.Ungar, P.S.: Dental evidence for the diests of Plio-Pleistocene hominis. Am. J. Phys. Anthropol. 146, 47 (2011).
65.Marshall, D.B., Cook, R.F., Padture, N.P., Oyen, M.L., Pajares, A., Bradby, J.E., Reimanis, I.E., Tandon, R., Page, T.F., Pharr, G.M., and Lawn, B.R.: The compelling case for indentation as a functional exploratory and characterization tool. J. Am. Ceram. Soc. 98, 2671 (2015).
66.Darvell, B.W., Lee, P.K.D., Yuen, T.D.B., and Lucas, P.W.: A portable fracture toughness tester for biological materials. Meas. Sci. Technol. 7, 954 (1996).
67.Valliappan, S. and Chee, C.K.: Aging degradation of mechanical structures. J. Mech. Mater. Struct. 3, 1923 (2008).


Future of nanoindentation in archaeometry

  • Nadimul Haque Faisal (a1), Rehan Ahmed (a2), Saurav Goel (a3) and Graham Cross (a4)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed