Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-23T02:47:54.624Z Has data issue: false hasContentIssue false

From imperfect to perfect Bi2Sr2CaCu2Ox (Bi–2212) grains

Published online by Cambridge University Press:  03 March 2011

B. Heeb
Affiliation:
Nichtmetallische Werkstoffe, ETH Zürich, Sonneggstr.5, CH-8092 Zürich, Switzerland
L.J. Gauckler
Affiliation:
Nichtmetallische Werkstoffe, ETH Zürich, Sonneggstr.5, CH-8092 Zürich, Switzerland
H. Heinrich
Affiliation:
Institut für Angewandte Physik, ETH Hönggerberg, CH-8093 Zürich, Switzerland
G. Kostorz
Affiliation:
Institut für Angewandte Physik, ETH Hönggerberg, CH-8093 Zürich, Switzerland
Get access

Abstract

The 2212 phase formation during annealing of melt textured Bi–2212 (Bi2Sr2CaCu2Ox) was investigated using differential thermal analysis, thermal gravimetric analysis, x-ray diffraction, scanning electron microscopy, energy dispersive x-ray analysis, and high resolution transmission electron microscopy. After zone melting, the material is multiphase consisting of 2212, 2201, Sr1−xCaxCuO2, and the eutectic. The 2212 phase formed is highly perfect with less than 5% intergrowths of 2201 layers; the 2201 phase shows no intergrowth of 2212 at all. In the first period of the annealing, remelting of the eutectic leads to fast oxygen diffusion and a high 2212 formation rate. The 2201 → 2212 transformation proceeds via intermediate states of high defect density. The 2212 grains contain up to 30–70% 2201 intergrowths. Further heat treatments lead to an annihilation of the great majority of intergrown 2201 layers. We propose a model for the formation of 2212 grains with a low planar defect density, based on frequent stacking faults, that allows diffusion of Ca- and Cu-atoms over a short distance. The model provides a schematic description of this solid-state process and correlates it to the characteristic microstructural features of melt-processed Bi–2212.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kase, J., Togano, K., Kumakura, H., Dietderich, D. R., Irisawa, N., Morimoto, T., and Maeda, H., Jpn. J. Appl. Phys. 29, L1096L1099 (1990).CrossRefGoogle Scholar
2Kubo, Y., Michishita, K., Higashida, Y., Mizuno, M., Yokoyama, H., Shimizu, N., Inukai, E., Kuroda, N., and Yoshida, H., Jpn. J. Appl. Phys. 28, L606L608 (1989).CrossRefGoogle Scholar
3Paul, W., Heeb, B., Baumann, Th., Guidolin, M., and Gauckler, L. J., in Layered Superconductors: Fabrication, Properties and Applications, edited by Shaw, D. T., Tsuei, C. C., Schneider, T. R., and Shiohara, Y. (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992), pp. 383387.Google Scholar
4Bock, J. and Preisler, E., High-Temperature Superconductors: Materials Aspects, edited by Freyhardt, H. C., Flükiger, R., and Peuckert, M. (DGM, Oberursel, 1991), pp. 215226.Google Scholar
5Heeb, B., Oesch, S., Bohac, P., and Gauckler, L. J., J. Mater. Res. 7, 29482955 (1992).CrossRefGoogle Scholar
6Chow, H. M., Jiang, X. P., Cima, M. J., Haggerty, J. S., Brody, H. D., and Flemings, M. C., J. Am. Ceram. Soc. 74, 13911396 (1991).CrossRefGoogle Scholar
7Xu, Z., Han, P. D., Chang, L., Asthana, A., and Payne, D. A., J. Mater. Res. 5, 3945 (1990).CrossRefGoogle Scholar
8Eibl, O., Physica C 168, 239248 (1990).CrossRefGoogle Scholar
9Eibl, O., Physica C 168, 249256 (1990).CrossRefGoogle Scholar
10Zandbergen, H. W., Groen, W. A., Mijlhoff, F. C., van Tendeloo, G., and Amelinckx, S., Physica C 156, 325354 (1988).CrossRefGoogle Scholar
11Lang, Ch., Hettich, B., Schwarz, M., Bestgen, H., and Elschner, S., Physica C 182, 7988 (1991).CrossRefGoogle Scholar
12Heinrich, H., Kostorz, G., Heeb, B., Müller, R., Schweizer, T., and Gauckler, L. J., Ultramicroscopy. 49, 265272 (1993).CrossRefGoogle Scholar
13Holesinger, T. G., Miller, D. J., Chumbley, L. S., Kramer, M. J., and Dennis, K. W., Physica C 202, 109120 (1992).CrossRefGoogle Scholar
14Bock, J., Elschner, S., and Preisler, E., Advances in Superconductivity III, edited by Kajimura, K. and Hayakawa, H. (Springer, Tokyo, 1991), pp. 797800.CrossRefGoogle Scholar
15Irvine, J. T. S. and Namgung, C., J. Solid State Chem. 87, 29 (1990).CrossRefGoogle Scholar
16Holesinger, T. G., Miller, D. J., and Chumbley, L. S., J. Mater. Res. 7, 16581671 (1992).CrossRefGoogle Scholar
17Phase Diagrams for Ceramists, Nat. Bur. Stand., Am. Ceram. Soc,VI, No. 6427, 136 (1987).Google Scholar