Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T10:33:46.676Z Has data issue: false hasContentIssue false

Fracture of fused silica with 351 nm laser-generated surface cracks

Published online by Cambridge University Press:  31 January 2011

F. Dahmani
Affiliation:
Laboratory for Laser Energetics, and Department of Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299
J. C. Lambropoulos
Affiliation:
Laboratory for Laser Energetics, and Department of Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299
A. W. Schmid
Affiliation:
Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299
S. Papernov
Affiliation:
Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299
S. J. Burns
Affiliation:
Department of Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299
Get access

Abstract

Laser-induced-surface-flaw experiments on fused silica at 351 nm and 500 ps pulse duration are reported here. Specimens with surface flaws produced at a measured exit-surface damage threshold fluence of Fexit/th = 10 J/cm2 were irradiated at a constant fluence of FL = 1.8 × Fexit/th by different numbers of laser pulses, N = 110 to 520. Micrograph observations show that (i) the produced cracks have a semielliptical shape and (ii) the material strength predictions based on the radial crack depth (normal to the surface) instead of the crack surface length (parallel to the surface) are in good agreement with measured strengths obtained using a four-point bending fixture. The underlying basis of conventional crack analysis is first examined critically and is argued to be deficient in the way the failure strength for the cracks is related to the characteristic parameters of crack geometry. In general, it is necessary to incorporate a residual term into the failure strength formulation. The crack depth and the failure strength are found to increase and decrease with the number of laser pulses, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Morgan, A. J., Rainer, F., De Marco, F. P., Gonzales, R. P., Kozlowski, M. R., and Staggs, M.C., in Laser Induced Damage in Optical Materials: 1989, Natl. Inst. Stand. Technol. (U.S.), Spec. Publ. 801 (U.S. Government Printing Office, Washington, DC, 1990), SPIE Vol. 1438, p. 47;CrossRefGoogle Scholar
Rainer, F., Brusasco, R. M., Campbell, J. H., De Marco, F. P., Gonzales, R. P., Kozlowski, M. R., Milanovich, F. P., Morgan, A. J., Scrivener, M. S., Staggs, M. C., Thomas, I.M., Velsko, S. P., and Wolfe, C. R., in Laser Induced Damage in Optical Materials: 1989, Natl. Inst. Stand. Technol. (U.S.), Spec. Publ. 801 (U.S. Government Printing Office, Washington, DC, 1990), SPIE Vol. 1438, p. 58.Google Scholar
2.Heimann, P. A. and Urstadt, R., Appl. Opt. 29, 495 (1990).CrossRefGoogle Scholar
3.Taylor, R. S., Leopold, K. E., Brimacombe, R. K., and Mihailov, S., Appl. Opt. 27, 3124 (1988).Google Scholar
4.Li, Y. Z., Harmer, M. P., and Chou, Y. T., J. Mater. Res. 9, 1780 (1994).CrossRefGoogle Scholar
5.Campbell, J. H., Hurst, P. A., Heggins, D. D., Steele, W. A., and Bumpas, S. E., in Laser-Induced Damage in Optical Materials: 1996, edited by Bennett, H. E., Guenther, A.H., Kozlowski, M. R., Newnam, B.E., and Soileau, M.J. (SPIE, Bellingham, WA, 1996), Vol. 2966, p. 106.CrossRefGoogle Scholar
6.Dwivedi, P. J. and Green, D. J., J. Am. Ceram. Soc. 78, 2122 (1995).CrossRefGoogle Scholar
7.Marshall, D.B. and Lawn, B. R., J. Mater. Sci. 14, 2001 (1979).CrossRefGoogle Scholar
8.Lawn, B.R. and Marshall, D. B., J. Am. Ceram. Soc. 62, 106 (1979).Google Scholar
9.Marshall, D.B., Lawn, B. R., and Chantikul, P., J. Mater. Sci. 14, 2225 (1979).CrossRefGoogle Scholar
10.Marshall, D.B. and Lawn, B.R., Commun. Am. Ceram. Soc., No. 1–1, C6 (1981).Google Scholar
11.Fuller, E.R., Lawn, B. R., and Cook, R. F., J. Am. Ceram. Soc. 66, 314 (1983).Google Scholar
12.Gruninger, M.F., Lawn, B.R., Farabaugh, E. N., and Wachtman, J. B. Jr, J. Am. Ceram. Soc. 70, 344 (1987).CrossRefGoogle Scholar
13.Cook, R. F. and Pharr, G. M., J. Am. Ceram. Soc. 73, 787 (1990).Google Scholar
14.Zeng, K. and Rowcliffe, D., J. Am. Ceram. Soc. 77, 524 (1994).Google Scholar
15.Lowdermilk, W.H. and Milam, D., IEEE J. Quantum Electron. QE–17, 1888 (1981).CrossRefGoogle Scholar
16.Crisp, M. D., Boling, N. L., and Dubé, G., Appl. Phys. Lett. 21, 364 (1972).CrossRefGoogle Scholar
17.Crisp, M. D., in Laser Induced Damage in Optical Materials: 1973, Natl. Bur. Stand. (U.S.), Spec. Publ. 387 (U.S. Government Printing Office, Washington, DC, 1973), p. 80.Google Scholar
18.Boling, N. L., Crisp, M. D., and Dubé, G., Appl. Opt. 12, 650 (1973).CrossRefGoogle Scholar
19. Corning Incorporated, Advanced Materials Department, Corning, NY 14831, USA.Google Scholar
20.Dahmani, F., Schmid, A., Lambropoulos, J. C., and Burns, S., Appl. Opt. 37, 1 (1998).CrossRefGoogle Scholar
21.Lawn, B., Fracture of Brittle Solids, 2nd ed., Cambridge Solid State Science Series (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
22.Shah, R.C. and Kobayashi, A. S., Int. J. Fract. 9, 133 (1973).CrossRefGoogle Scholar
23.Newman, J. C. Jr, and Raju, I. S., Eng. Fract. Mech. 15, 185 (1981).CrossRefGoogle Scholar
24.Irwin, G.R., Trans. ASME, J. Appl. Mech., 651 (1962).CrossRefGoogle Scholar
25.Broek, D., Elementary Engineering Fracture Mechanics, 3rd ed. (Martinus Nijhoff, The Hague, 1982), Chap. 3.Google Scholar
26.Glaesemann, G.S., Jakus, K., and Ritter, J. E. Jr, J. Am. Ceram. Soc. 70, 441 (1987).CrossRefGoogle Scholar
27.Roach, D.H. and Cooper, A.R., J. Am. Ceram. Soc. 68, 632 (1985).CrossRefGoogle Scholar
28.Kuske, A. and Robertson, G., Photoelastic Stress Analysis (Wiley-Interscience, London, 1974).Google Scholar