Skip to main content Accessibility help

Fracture mode of alumina/silicon carbide nanocomposites

  • André Zimmermann (a1), Mark Hoffman (a2) and Jürgen Rödel (a1)


Computer simulations have been designed to elucidate the evolution of microcracking in a nanocomposite using appropriate material values for alumina and silicon carbide. These are compared to a single-phase material using elastic and thermal expansion coefficients for alumina. It is found that the region and the fracture mode where microcracking ensues are determined by the intensity and the length scale of the residual stress fields, which interact. Of specific interest are the region, fracture mode, and length of ensuing microcracks for materials with different inclusion locations (at the grain boundary or within the grain) and with different grain size to inclusion size ratios.



Hide All
1.Bennison, S.J. and Lawn, B.R., Acta Metall. 37, 2659 (1989).
2.Zimmermann, A. and Rödel, J., J. Am. Ceram. Soc. 81, 2527 (1998).
3.Lange, F.F., J. Am. Ceram. Soc. 72, 3 (1989).
4.Ramachandran, N. and Shetty, D.K., J. Am. Ceram. Soc. 74, 2634 (1991).
5.Niihara, K., J. Ceram. Soc. Jpn. 99, 974 (1991).
6.Sternitzke, M., J. Eur. Ceram. Soc. 17, 1061 (1997).
7.Stearns, L.C. and Harmer, M.P., J. Am. Ceram. Soc. 79, 3013 (1996).
8.Zhao, J., Stearns, L.C., Harmer, M.P., Chan, H.M., Miller, G.A., and Cook, R.F., J. Am. Ceram. Soc. 76, 503 (1993).
9.Hoffman, M. and Rödel, J., J. Am. Ceram. Soc. Jpn. 105, 1086 (1997).
10.Levin, I., Kaplan, W.D., Brandon, D.G., and Layyous, A.A., J. Am. Ceram. Soc. 78, 254 (1995).
11.Pezzotti, G., Sergio, V., Ota, K., Sbaizero, O., Muraki, N., Nishida, T., and Sakai, M., J. Ceram. Soc. Jpn. 104, 497 (1996).
12.Todd, R., Bourke, M., Borsa, C., and Brook, R., Acta Mater. 45, 1791 (1997).
13.Perez-Rigueiro, J., Pastor, J.Y., Llorca, J., Elices, M., Miranzo, P., and Moya, J.S., Acta Mater. 46, 5399 (1998).
14.Carroll, L., Sternitzke, M., and Derby, B., Acta Metall. Mater. 44, 4543 (1996).
15.Xu, Y., Zangvil, A., and Kerber, A., J. Eur. Ceram. Soc. 17, 921 (1997).
16.Zimmermann, A., Carter, W.C., and Fuller, E.R. Jr., (unpublished).
17.Sridhar, N., Yang, W., Srolovitz, D.J., and Fuller, E.R. Jr., J. Am. Ceram. Soc. 77, 1123 (1994).
18.Anderson, M.P., Srolovitz, D.J., Sahni, P.S., and Grest, G.S., Acta Metall. 32, 793 (1984).
19.Hoffman, M., Rödel, J., Sternitzke, M., and Brook, R., in Fracture Mechanics of Ceramics, edited by Bradt, R.C., Hasselman, D.P.H, Munz, D., Sakai, M. and Shevchenko, V.Y. (Plenum Press, New York, 1996), Vol. 12 p. 179.
20.Grest, G.S., Anderson, M.P., and Srolovitz, D.J., Philos. Mag. B 59, 293 (1988).
21.Wachtman, J.B. Jr., Tefft, W.E., Lam, D.G. Jr., and Stinchfield, R.P., J. Res. Natl. Bur. Stand. (U.S.) 43, 213 (1960).
22.Kreher, W. and Pompe, W., Internal Stresses in Heterogeneous Solids (Akademie-Verlag, Berlin, 1989).
23.Munz, D. and Fett, T., Mechanisches Verhalten keramischer Werkstoffe (Springer-Verlag, Berlin, 1989).
24.Carter, W.C., Langer, S.A., and Fuller, E.R. Jr., The OOF Manual: Version 1.0, NISTIR 6256 (National Institute of Standards and Technology, Gaithersburg, MD, 1998).
25.Jagota, A. and Bennison, S.J., Modelling Simul. Mater. Sci. Eng. 3, 485 (1995).
26.Ohji, T., Jeong, Y-K., Choa, Y-H., and Niihara, K., J. Am. Ceram. Soc. 81, 1453 (1998).
27.Merkert, P., Hoffman, M., and Rödel, J., J. Eur. Ceram. Soc. 18, 1645 (1998).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed