Skip to main content Accessibility help

Fracture and deformation in brittle solids: A perspective on the issue of scale

  • Brian R. Lawn (a1)


A perspective on the issue of scale in the fracture and deformation properties of ordinarily brittle covalent–ionic solids (ceramics) is presented. Characteristic scaling dimensions for nanomechanical properties of this class of solids are identified—specimen size or layer thickness, microstructural scale, and contact dimension. Transitions in mechanical damage processes occur as the characteristic dimensions diminish from the macroscale to the submicroscale. Such transitions generally preclude unconditional extrapolations of macroscopic-scale fracture and deformation laws into the nanomechanics region. Strength of brittle solids tends to increase while toughness tends to decrease as the scaling dimensions diminish. The nature of flaws that control strength in the submicroscale region also undergoes fundamental changes—even flaws without well-developed microcracks can be deleterious to strength.



Hide All
1.Arzt, E., Acta Mater. 16, 5611 (1998).
2.Petch, N.J. in Fracture, edited by Liebowitz, H. (Academic Press, New York, 1968), Vol. 1, Chapter 5. p. 351.
3.Rice, R.W., Proc. Br. Ceram. Soc. 20, 205 (1972).
4.Ohji, T., Jeong, T., Choa, Y.K. and Niihara, K., J. Am. Ceram. Soc. 811, 1453 (1998).
5.Lawn, B.R., Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993).
6.Griffith, A.A., Phil. Trans. Roy. Soc. Lond. A 221, 163 (1920).
7.Namazu, T., Isono, Y. and Tanaka, T., Journal of Microelectromechanical Systems 9, 450 (2000).
8.Ding, J.N., Meng, Y.G. and Wen, S.Z., J. Mater. Res. 16, 2223 (2001).
9.Lehoczky, S.L., J. Appl. Phys. 49, 5479 (1978).
10.Was, G.S. and Foecke, T., Thin Solid Films 286, 1 (1996).
11.Josell, D., Heerden, D.v., Read, D., Bonevich, J., Schechtman, D., J. Mater. Res. 13, 2902 (1998).
12.Gerberich, W.W., Strojny, A., Yoder, K. and Cheng, L-S., J. Mater. Res. 14, 2210 (1999).
13.Lawn, B.R., Curr. Opin. Solid State Mater. Sci. 6, 229 (2002).
14.Lawn, B.R., Deng, Y., Miranda, P., Pajares, A., Chai, H., Kim, D.K., J. Mater. Res. 17, 3019 (2002).
15.Lawn, B.R. and Wilshaw, T.R., J. Mater. Sci. 10, 1049 (1975).
16.Chai, H., Lawn, B.R. and Wuttiphan, S., J. Mater. Res. 14, 3805 (1999).
17.Weppelmann, E. and Swain, M.V., Thin Solid Films 286, 111 (1996).
18.Anderson, R., Toth, G., Gan, L. and Swain, M.V., Eng. Fract. Mech. 61, 93 (1998).
19.Thomsen, N.B., Fischer-Cripps, A.C. and Swain, M.V., Thin Solid Films 332, 180 (1998).
20.Begley, M.R., Evans, A.G. and Hutchinson, J.W., Int. J. Solids Struct. 36, 2773 (1999).
21.Chai, H. and Lawn, B.R., J. Mater. Res. (submitted).
22.Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells (McGraw-Hill, New York, 1959).
23.Frank, F.C. and Lawn, B.R., Proc. Roy. Soc. Lond. A 299, 291 (1967).
24.Chai, H., Int. J. Solids Struct. 40, 591 (2003).
25.Miranda, P., Pajares, A., Guiberteau, F., Cumbrera, F.L., andB.R. Lawn, Acta Mater. 49, 3719 (2001).
26.Cai, H., Stevens-Kalceff, M.A. and Lawn, B.R., J. Mater. Res. 9, 762 (1994).
27.Fischer-Cripps, A.C. and Lawn, B.R., J. Am. Ceram. Soc. 79, 2609 (1996).
28.Peterson, I.M., Wuttiphan, S., Lawn, B.R. and Chyung, K., Dent. Mater. 14, 80 (1998).
29.Fischer-Cripps, A.C. and Lawn, B.R., Acta Mater. 44, 519 (1996).
30.Fischer-Cripps, A.C., J. Am. Ceram. Soc. 84, 2603 (2001).
31.Lawn, B.R., J. Am. Ceram. Soc. 81, 1977 (1998).
32.Swanson, P.L., Fairbanks, C.J., Lawn, B.R., Mai, Y-W. and Hockey, B.J., J. Am. Ceram. Soc. 70, 279 (1987).
33.Quinn, J.B., Sundar, V. and Lloyd, I.K., Dent. Mater. (2003).
34.Horii, H. and Nemat-Nasser, S., Phil. Trans. Roy. Soc. Lond. 19, 603 (1986).
35.Lawn, B.R., Lee, S.K., Peterson, I.M. and Wuttiphan, S., J. Am. Ceram. Soc. 81, 1509 (1998).
36.Lawn, B.R., Evans, A.G. and Marshall, D.B., J. Am. Ceram. Soc. 63, 574 (1980).
37.Evans, A.G., J. Am. Ceram. Soc. 73, 187 (1990).
38.Cho, S-J., Hockey, B.J., Lawn, B.R. and Bennison, S.J., J. Am. Ceram. Soc. 72, 1249 (1989).
39.Lathabai, S., Rödel, J. and Lawn, B.R., J. Am. Ceram. Soc. 74, 1340 (1991).
40.Ritchie, R.O., Int. J. Fract. 100, 55 (1998).
41.Zhao, J.H., Stearns, L.C., Harmer, M.P., Chan, H.M., Miller, G.A. and Cook, R.F., J. Am. Ceram. Soc. 76, 503 (1993).
42.Rhee, Y-W., Kim, H-W., Deng, Y. and Lawn, B.R., J. Am. Ceram. Soc. 84, 561 (2001).
43.Lawn, B.R. and Evans, A.G., J. Mater. Sci. 12, 2195 (1977).
44.Lawn, B.R. and Marshall, D.B., J. Am. Ceram. Soc. 62, 347 (1979).
45.Lawn, B.R., Dabbs, T.P. and Fairbanks, C.J., J. Mater. Sci. 18, 2785 (1983).
46.Lawn, B.R. and Howes, V.R., J. Mater. Sci. 16, 2745 (1981).
47.Dabbs, T.P., Fairbanks, C.J. and Lawn, B.R. in Methods for Assessing the Structural Reliability of Brittle Materials, edited by Freiman, S.W. and Hudson, C.M. (ASTM Special Technical Publication 844, Philadelphia, 1984), pp. 142–53.
48.Roach, D.H., Lathabai, S. and Lawn, B.R., J. Am. Ceram. Soc. 71, 97 (1988).
49.Lin, B. and Matthewson, M.J., Philos. Mag. A 74, 1235 (1996).
50.Hill, M.J. and Rowcliffe, D.J., J. Mater. Sci. 9, 1569 (1974).
51.Hagan, J.T., J. Mater. Sci. 14, 2975 (1979).
52.Hagan, J.T., J. Mater. Sci. 15, 1417 (1980).
53.Kelly, A., Strong Solids (Clarendon Press, Oxford, 1966).
54.Bradby, J.G., Williams, J.S., Wong-Leung, J., Swain, M.V. and Munroe, P., J. Mater. Res. 16, 1500 (2001).
55.Bradby, J.G., Williams, J.S., Wong-Leung, J., Kucheyev, S.O., Swain, M.V. and Munroe, P., Philos. Mag. A 82, 1931 (2002).
56.Stach, E.A., Freeman, T., Minor, A.M., Owen, D.K., Cumings, J., Wall, M.A., Chraska, T., Hull, R., Morris, J.W. and Zettl, A., Microscopy and Microanalysis 7, 507 (2001).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed