Skip to main content Accessibility help
×
Home

Formation of TiO2 nanomaterials via titanium ethylene glycolide decomposition

  • Ting Xia (a1), Joseph W. Otto (a2), Tanmoy Dutta (a3), James Murowchick (a4), Anthony N. Caruso (a5), Zhonghua Peng (a6) and Xiaobo Chen (a6)...

Abstract

Titanium dioxide (TiO2) nanomaterials, as important photocatalysis materials, have been synthesized with many approaches. In this study, we reported the synthesis of TiO2 nanomaterials by reacting titanium isopropoxide with ethylene glycol under basic condition followed by calcination at high temperatures. The structural, optical, and photocatalytic properties of the TiO2 nanomaterials were studied with x-ray diffraction, Raman spectroscopy, transmission electron microscopy, differential scanning calorimetry, Fourier-transformed infrared spectroscopy, x-ray and ultraviolet (UV) photoemission spectroscopy, UV–vis diffusive reflectance, and photocatalytic decomposition of methylene blue. We found that the titanium ethylene glycolide decomposes at 330 °C and transforms into pure anatase TiO2 around 400 °C. The anatase phase further transforms into core/shell rutile/anatase TiO2 composite at 550 °C and displays the highest photocatalytic activity among the samples prepared. The high photocatalytic activity can be attributed to the improved charge separation at the rutile/anatase n/n junction interface and the high crystallinity of the sample after calcination.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: chenxiaobo@umkc.edu

References

Hide All
1.Pfaff, G. and Reynders, P.: Angle-dependent optical effects deriving from submicron structures of films and pigments. Chem. Rev. 99, 1963 (1999).
2.Salvador, A., Pascual-Marti, M.C., Adell, J.R., Requeni, A., and March, J.G.: Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen creams. J. Pharm. Biomed. Anal. 22, 301 (2000).
3.Zallen, R. and Moret, M.P.: The optical absorption edge of brookite TiO2. Solid State Commun. 137, 154 (2006).
4.Braun, J.H., Baidins, A., and Marganski, R.E.: Titanium dioxide pigment technology: A review. Prog. Org. Coat. 20, 105 (1992).
5.Yuan, S.A., Chen, W.H., and Hu, S.S.: Fabrication of TiO2 nanoparticles/surfactant polymer complex film on glassy carbon electrode and its application to sensing trace dopamine. Mater. Sci. Eng., C C25, 479 (2005).
6.Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).
7.Oregan, B. and Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films. Nature 353, 737 (1991).
8.Linsebigler, A.L., Lu, G., and Yates, J.T. Jr.: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995).
9.Fujishima, A., Rao, T.N., and Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1, 1 (2000).
10.Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).
11.Trentler, T.J., Denler, T.E., Bertone, J.F., Agrawal, A., and Colvin, V.L.: Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J. Am. Chem. Soc. 121, 1613 (1999).
12.Bessekhouad, Y., Robert, D., and Weber, J.V.: Synthesis of photocatalytic TiO2 nanoparticles: Optimization of the preparation conditions. J. Photochem. Photobiol., A 157, 47 (2003).
13.Kim, K.D., Kim, S.H., and Kim, H.T.: Applying the Taguchi method to the optimization for the synthesis of TiO2 nanoparticles by hydrolysis of TEOT in micelles. Colloids Surf., A 254, 99 (2005).
14.Yang, J., Mei, S., and Ferreira, J.M.F.: Hydrothermal synthesis of TiO2 nanopowders from tetra alkylammonium hydroxide peptized sols. Mater. Sci. Eng., C C15, 183 (2001).
15.Kim, C.S., Moon, B.K., Park, J.H., Chung, S.T., and Son, S.M.: Synthesis of nanocrystalline TiO2 in toluene by a solvothermal route. J. Cryst. Growth 254, 405 (2003).
16.Wu, J.M.: Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide. J. Cryst. Growth 269, 347(2004).
17.Seifried, S., Winterer, M., and Hahn, H.: Nanocrystalline titania films and particles by chemical vapor synthesis. Chem. Vap. Deposition 6, 239 (2000).
18.Xiang, B., Zhang, Y., Wang, Z., Luo, X.H., Zhu, Y.W., Zhang, H.Z., and Yu, D.P.: Field-emission properties of TiO2 nanowire arrays. J. Phys. D: Appl. Phys. 38, 1152 (2005).
19.Lei, Y., Zhang, L.D., and Fan, J.C.: Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3. Chem. Phys. Lett. 338, 231 (2001).
20.Huang, W., Tang, X., Wang, Y., Koltypin, Y., and Gedanken, A.: Selective synthesis of anatase and rutile via ultrasound irradiation. Chem. Commun. 15, 1415 (2000).
21.Yamamoto, T., Wada, Y., Yin, H., Sakata, T., Mori, H., and Yanagida, S.: Microwave-driven polyol method for preparation of TiO2 nanocrystallites. Chem. Lett. 10, 964 (2002).
22.Oskam, G., Nellore, A., Penn, R.L., and Searson, P.C.: The growth kinetics of TiO2 nanoparticles from titanium (IV) alkoxide at high water/titanium ratio. J. Phys. Chem. B 107, 1734 (2003).
23.Jenkins, R. and Snyder, R.L.: Introduction to X-rap Powder Diffractometry (John Wiley & Sons Inc., New York, 1996).
24.Zhang, J., Li, M., Feng, Z., Chen, J., and Li, C.: UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J. Phys. Chem. B 110, 927 (2006).
25.Chen, X. and Burda, C.: The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130, 5018 (2008).
26.Chen, X., Liu, L., Yu, P.Y., and Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).
27.Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).
28.Thompson, T.L. and Yates, J.T. Jr.: TiO2-based photocatalysis: Surface defects, oxygen and charge transfer. Top. Catal. 35, 197 (2005).
29.Park, Y.R. and Kim, K.J.: Structural and optical properties of rutile and anatase TiO2 thin films: Effects of Co doping. Thin Solid Films 484, 34 (2005).
30.Zhang, J., Xu, Q., Feng, Z., Li, M., and Li, C.: Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Ed. 47, 1766 (2008).

Formation of TiO2 nanomaterials via titanium ethylene glycolide decomposition

  • Ting Xia (a1), Joseph W. Otto (a2), Tanmoy Dutta (a3), James Murowchick (a4), Anthony N. Caruso (a5), Zhonghua Peng (a6) and Xiaobo Chen (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed