Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T19:56:55.311Z Has data issue: false hasContentIssue false

Formation of metastable π phase in mechanically alloyed tellurium-rich Ag–Te alloys

Published online by Cambridge University Press:  03 March 2011

J. Chitralekha
Affiliation:
Department of Metallurgy and Department of Physics, Indian Institute of Science, Bangalore 560 012, India
K. Raviprasad
Affiliation:
Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India
E.S.R. Gopal
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore 560 012, India
K. Chattopadhyay
Affiliation:
Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India
Get access

Abstract

This paper reports on the formation of metastable π phase on mechanical alloying of elemental Ag and Te powders in the composition range of 50 to 75 at. % Te. Contrary to the reported results in vapor-deposited thin films, no amorphous phase could be detected during mechanical alloying. The extent to which the π phase forms on milling is restricted, compared to rapid solidification. Formation of the metastable π phase coincides with the achievement of nanometric grain size and is preceded by the formation of intermetallic compound Ag2Te. An approximate estimation of the free energies of the competing phases has been attempted to provide insight into the phase selection process. It is suggested that tellurium diffusion through the nanoscale grain boundaries plays an important role in the formation of the metastable π phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Beamer, W. H. and Maxwell, L. R., J. Chem. Phys. 17, 1293 (1949).CrossRefGoogle Scholar
2Tsuei, C. C., Yen, H-C., and Duwez, P., Phys. Lett. 34A, 80 (1971).CrossRefGoogle Scholar
3Kikegawa, T. and Iwasaki, H., Acta Crystallogr. B 39, 158 (1983).CrossRefGoogle Scholar
4Beister, H. J., Strossner, K., and Syassen, K., Phys. Rev. B 41, 5535 (1990).CrossRefGoogle Scholar
5Kolobyanina, T. N., Kabalkina, S. S., Vereschagin, L. F., and Fedina, L. V., Sov. Phys. JETP 28, 88 (1969).Google Scholar
6Luo, H. L. and Klement, W. J., J. Chem. Phys. 36, 1870 (1962).CrossRefGoogle Scholar
7Geissen, B. C., Wolff, U., and Grant, N. J., Trans. AIME 242, 597 (1968).Google Scholar
8Johnson, W. L. and Poon, S. J., J. Appl. Phys. 45, 3683 (1974).CrossRefGoogle Scholar
9Range, K-J., Zabel, M., Rau, F., von Krziwanek, F., Marx, R., and Panzer, B., Angew Chem. Int. Ed. Engl. 21, 706 (1982).CrossRefGoogle Scholar
10Joannopoulos, J. D., Proc. Int. Conf. on The Physics of Selenium and Tellurium, Konigstein, Federal Republic of Germany, edited by Gerlach, E. and Grosse, P. (1979), p. 2.Google Scholar
11Hauser, J. J., J. Appl. Phys. 53, 3634 (1982).Google Scholar
12Fecht, H. J., Han, G., Fu, Z., and Johnson, W. L., J. Appl. Phys. 67, 1744 (1990).CrossRefGoogle Scholar
13Eckert, J., Schultz, L., and Urban, K., Mater. Sci. Eng. A133, 393 (1991).CrossRefGoogle Scholar
14Koch, C. C., Cavin, O. B., McKamay, C.G., and Scorbrough, J. O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
15Uenishi, K., Kobayashi, K. F., Ishihara, K. N., and Shingu, P. H., Mater. Sci. Eng. A 134, 1342 (1991).CrossRefGoogle Scholar
16Jacob, C., Ph.D. Thesis, I.I.Sc, Bangalore, India (1993).Google Scholar
17Karakaya, I. and Thompsons, W. T., J. Phase Equilibria 12, 56 (1991).CrossRefGoogle Scholar
18Barin, I., Knacke, O., and Kubaschewski, O., Thermochemical Properties of Inorganic Substances (supplement) (Springer-Verlag, Berlin, 1977).Google Scholar
19Abbasov, A. S. and Mustafaev, F. M., Khim. Suyaz Krist. Poluprovodn. Polimet, 235 (1973).Google Scholar
20Takahashi, T. and Yamamoto, O., J. Electrochem. Soc. 117, 1 (1970).CrossRefGoogle Scholar
21Yavari, A. R., Mater. Sci. Eng. A179/A180, 20 (1994).Google Scholar
22Miedema, A. R., de Chatel, P. F., and de Boer, F. R., Physica 100B, 1 (1980).Google Scholar
23Parthasarathy, G. and Holzapfel, W. B., Phys. Rev. B 37, 8499 (1988).CrossRefGoogle Scholar
24Kaufman, L. and Bernstein, H., Computer Calculation of Phase Diagrams, (Academic Press, New York, 1970), p. 46.Google Scholar
25Gosele, U. and Tu, K. N., J. Appl. Phys. 53(4), 3252 (1982).CrossRefGoogle Scholar
26Hauser, J. J., in Proc. 9th Int. Conf. on Cryst. and Amor. Semicond., Grenoble, France, J. de. Phys. (Paris) 42, C4943 (1981).Google Scholar
27Hirota, Y., Isshiki, T., Okashita, K., and Shiojiri, M., J. Cryst. Growth 112, 55 (1991).CrossRefGoogle Scholar
28Horvath, J., Birringer, R., and Gleiter, H., Solid State Commun. 62, 319 (1987).CrossRefGoogle Scholar
29Chr. Herzig, Geise, J., and Mishin, Yu., Acta. Metall. Mater. 41, 1683 (1993).Google Scholar