Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-16T12:32:48.965Z Has data issue: false hasContentIssue false

Flux bundle interactions

Published online by Cambridge University Press:  31 January 2011

Richard B. Stephens
Affiliation:
General Atomics, San Diego, California 92121
Get access

Abstract

We show that magnetic flux lattice interactions are important at fields above a few thousand gauss. These interactions interfere with thermally activated current-induced flux bundle hopping and reduce the superconductor's flux creep resistance below that estimated from the standard flux creep models (which assume completely independent hopping). We find that the flux bundles can hop independently at the low fields at which, e.g., antennas and SQUID detection coils would be used, but interact very strongly at fields typical of magnet applications.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Campbell, A. M. and Evetts, J. E., Adv. Phys. 21, 199 (1972).CrossRefGoogle Scholar
2Beasley, M. R., Labusch, R., and Webb, W. W., Phys. Rev. 181, 682 (1969).CrossRefGoogle Scholar
3Müller, K. A., Takashige, M., and Bednorz, J. G., Phys. Rev. Lett. 58, 1143 (1987).CrossRefGoogle Scholar
4Rossel, C., Maeno, Y., and Morgenstern, I., Phys. Rev. Lett. 62, 681 (1989).CrossRefGoogle Scholar
5Yeshurun, Y. and Malozemoff, A. P., Phys. Rev. Lett. 60, 2202 (1988).CrossRefGoogle Scholar
6Tinkham, M., Introduction to Superconductivity (McGraw-Hill, New York, 1975), p. 141.Google Scholar
7Tinkham, M., Introduction to Superconductivity (McGraw-Hill, New York, 1975), p. 149.Google Scholar
8Palstra, T. T. M., Batlogg, B., Schneemeyer, L. F., and Waszczak, J. V., Phys. Rev. Lett. 61, 1662 (1989); R. Griessen, C. F. J. Flipse, C. W. Hagen, J. Lensink, B. Dam, and G. M. Stollman, J. Less-Common Metals 151, 39 (1989).CrossRefGoogle Scholar
9Tinkham, M., Introduction to Superconductivity (McGraw-Hill, New York, 1975), p. 151.Google Scholar
10Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals and Products, 4th ed. (Academic Press, New York, 1965), p. 26.Google Scholar
11Handbook of Mathematical Functions, edited by Abramowitz, M. and Stegun, I. A. (Dover Pub. Inc., New York, 1964), p. 379, Eq. 9.8.5.Google Scholar
12 A large range of values have been measured, from 20 meV on up. See, for example, Y. Yeshurun, A. P. Malozemoff, and F. Holtzberg, 4th Joint MMM-Int. Conf. Vancouver, July 12–15, 1988 (U = 20 meV); R. Griessen, C. F. J. Flipse, C. W. Hagen, J. Lensink, B. Dam, and G. M. Stollman, “Critical currents and magnetic relaxation of epitaxial YBa2Cu3O7-s films,” Proc. E-MRS Fall meeting, Strasbourg (France) and J. Less-Common Metals (1989) (U = 25 meV); C. W. Hagen and R. Griessen, a review article in Studies of High Temperature Superconductors, edited by A. V. Narlikar (Nova Science Publishers, Commack, New York, 1989), Vol. 3, pp. 159–195 (U = distribution peaked near 50 meV); T. T. M. Palstra, Critical Current Conference, SnowMass (CO) 1988; and T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 61,1662 (1988) (U > 400 meV).+400+meV).>Google Scholar
13Dolan, G. J., Chandrashekhar, G. V., Dinger, T. R., Feild, C., and Holtzberg, F., Phys. Rev. Lett. 62, 827 (1989).CrossRefGoogle Scholar