Skip to main content Accessibility help
×
Home

First report on cold-sprayed AlCoCrFeNi high-entropy alloy and its isothermal oxidation

  • Ameey Anupam (a1), S. Kumar (a2), Naveen M. Chavan (a2), Budaraju Srinivasa Murty (a1) and Ravi Sankar Kottada (a1)...

Abstract

Cold-sprayed high-entropy alloy (HEA) coatings have been generated for the first time. Mechanically alloyed (MA) AlCoCrFeNi powder was chosen as feedstock, owing to the extensive literature on this alloy. Coatings were synthesized under various gas temperature and pressure conditions. Isothermal oxidation was conducted at 1100 °C for 25 h on the coating cold-sprayed at 400 °C and 10 bar on a Ni-base superalloy substrate. The as-sprayed coating retained the MA phases and formed a protective alumina layer upon oxidation. An interdiffusion zone at the interface and unanticipated Mo diffusion from the superalloy substrate into the coating were observed after oxidation. A comprehensive characterization at the coating–substrate interface suggests that diffusion in HEAs is not sluggish. The factors governing the coating’s oxidation are elucidated, and a plausible oxidation mechanism is discussed. These studies are aimed at developing oxidation-resistant HEA coatings for potential applications at high operating temperatures.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: ameeyanupam@gmail.com

References

Hide All
1.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
2.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2004).
3.Gao, M.C., Liaw, P.K., Yeh, J.W., and Zhang, Y.: High-Entropy Alloys (Springer International Publishing, Zurich, Switzerland, 2016).
4.Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 488 (2017).
5.Zhang, C., Zhang, F., Chen, S., and Cao, W.: Computational thermodynamics aided high-entropy alloy design. JOM 64, 839 (2012).
6.Wang, W-R., Wang, W-L., Wang, S-C., Tsai, Y-C., Lai, C-H., and Yeh, J-W.: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 44 (2012).
7.Manzoni, A., Daoud, H., Volkl, R., Glatzel, U., and Wanderka, N.: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy 132, 212 (2013).
8.Ji, W., Fu, Z., Wang, W., Wang, H., Zhang, J., Wang, Y., and Zhang, F.: Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J. Alloys Compd. 589, 61 (2014).
9.Uporov, S., Bykov, V., Pryanichnikov, S., Shubin, A., and Uporova, N.: Effect of synthesis route on structure and properties of AlCoCrFeNi high-entropy alloy. Intermetallics 83, 1 (2017).
10.Vaidya, M., Prasad, A., Parakh, A., and Murty, B.S.: Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying. Mater. Des. 126, 37 (2017).
11.Shivam, V., Basu, J., Pandey, V.K., Shadangi, Y., and Mukhopadhyay, N.K.: Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Adv. Powder Technol. 29, 2221 (2018).
12.Wang, Y.P., Li, B.S., Ren, M.X., Yang, C., and Fu, H.Z.: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater. Sci. Eng., A 491, 154 (2008).
13.Tang, Z., Senkov, O.N., Parish, C.M., Zhang, C., Zhang, F., Santodonato, L.J., Wang, G., Zhao, G., Yang, F., and Liaw, P.K.: Tensile ductility of an AlCoCrFeNi multi-phase high-entropy ally through hot isostatic pressing (HIP) and homogenization. Mater. Sci. Eng., A 647, 229 (2015).
14.Jiao, Z.M., Wang, Z.H., Wu, R.F., and Qiao, J.W.: Strain rate sensitivity of nanoindentation creep in an AlCoCrFeNi high-entropy alloy. Appl. Phys. A 122, 794 (2016).
15.Mohanty, S., Maity, T.N., Mukhopadhyay, S., Sarkar, S., Gurao, N.P., Bhowmick, S., and Biswas, K.: Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng., A 679, 299 (2017).
16.Ghassemali, E., Sonkusare, R., Biswas, K., and Gurao, N.P.: In situ study of crack initiation and propagation in a dual phase AlCoCrFeNi high entropy alloy. J. Alloys Compd. 710, 539 (2017).
17.Butler, T.M.: Phase stability and oxidation behaviour of Al–Ni–Co–Cr–Fe based high-entropy alloys. Doctoral thesis, University of Alabama, Tuscaloosa, 2016.
18.Dabrowa, J., Cieslak, G., Stygar, M., Mroczka, K., Berent, K., Kulik, T., and Danielewski, M.: Influence of Cu content on high temperature oxidation behaviour of AlCoCrCuxFeNi high entropy alloys (x = 0; 0.5; 1). Intermetallics 84, 52 (2017).
19.Zhang, A., Han, J., Su, B., and Meng, J.: Tribological properties of AlCoCrFeNi high entropy alloy at elevated temperature. Tribology 37, 776 (2017).
20.Huang, P-K. and Yeh, J-W.: Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings. Scr. Mater. 62, 105 (2010).
21.Pogrenbjak, A.D., Yakushchenko, I.V., Bondar, O.V., Beresnev, V.M., Oyoshi, K., Ivasishin, O.M., Amekura, H., Takeda, Y., Opielak, M., and Kozak, C.: Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings. J. Alloys Compd. 679, 155 (2016).
22.Huang, C., Zhang, Y., Shen, J., and Vilar, R.: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy. Surf. Coat. Technol. 206, 1389 (2011).
23.Padture, N.P., Gell, M., and Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280 (2002).
24.Ang, A.S.M., Berndt, C.C., Sesso, M.L., Anupam, A., Praveen, S., Kottada, R.S., and Murty, B.S.: Plasma-sprayed high entropy alloys: Microstructure and properties of AlCoCrFeNi and MnCoCrFeNi. Metall. Mater. Trans. A 46A, 791 (2015).
25.Moridi, A., Hassani-Gangaraj, S.M., Guagliano, M., and Dao, M.: Cold spray coating: A review of material systems and future perspectives. Surf. Eng. 30, 369 (2014).
26.Alkhimov, A.P. and Anatoly, N.: Gas-dynamic spraying method for applying a coating. U.S. Patent No. 5302414, 1994, accessed 24 July, 2018.
27.Assadi, H., Gartner, F., Stoltenhoff, T., and Kreye, H.: Bonding mechanism in cold gas spraying. Acta Mater. 51, 3479 (2003).
28.Stoltenhoff, T., Kreye, H., and Richter, H.J.: An analysis of cold spray process and its coatings. J. Therm. Spray Technol. 11, 542 (2002).
29.Zhao, Q., Ma, G., Wang, H., Li, G., Chen, S., and Zhou, Y.: Review on preparation and application of high-entropy alloy coatings. Mater. Rev. 31, 65 (2017).
30.Yin, S., Li, W., Song, B., Yan, X., Kuang, M., Xu, Y., Wen, K., and Lupoi, R.: Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying. J. Mater. Sci. Technol. in press, accepted manuscript (2018). Available at: https://doi.org/10.1016/j.jmst.2018.12.015.
31.ASM Handbook Volume 3: Alloy Phase Diagrams prepared under the direction of the ASM International Alloy Phase Diagram and Handbook Committees, Metals Park, Ohio (ASM International, 1992).
32.Zhu, G., Liu, Y., and Ye, J.: Early high-temperature oxidation behaviour of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder. Int. J. Refract. Met. Hard Mater. 44, 35 (2014).
33.Kumar, A., Swarnakar, A.K., and Chopkar, M.: Phase evolution and mechanical properties of AlCoCrFeNiSix high-entropy alloys synthesized by mechanical alloying and spark plasma sintering. J. Mater. Eng. Perform. 27, 3304 (2018).
34.Chen, J., Niu, P., Wei, T., Hao, L., Liu, Y., Wang, H., and Peng, Y.: Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites. J. Alloys Compd. 649, 630 (2015).
35.Papyrin, A., Kosarev, V., Klinkov, S., Alkimov, A., and Fomin, V.: Cold Spray Technology (Elsevier, Science, Amsterdam, Netherlands, 2007); ch. 3.
36.Tedmon, C.S. Jr.: The effect of oxide volatilization on the oxidation kinetics of Cr and Fe–Cr alloys. J. Electrochem. Soc. 113, 766 (1966).
37.Evans, A.G., Clarke, D.R., and Levi, C.G.: The influence of oxides on the performance of advanced gas turbines. J. Eur. Ceram. Soc. 28, 1405 (2008).
38.Wagner, C.: Passivity and inhibition during the oxidation of metals at elevated temperatures. Corros. Sci. 5, 751 (1965).
39.Pomeroy, M.J.: Coatings for gas turbine materials and long-term stability issues. Mater. Des. 26, 223 (2005).
40.Vaidya, M., Pradeep, K.G., Murty, B.S., Wilde, G., and Divinki, S.V.: Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 146, 211 (2018).
41.Li, Q., Chen, W., Zhong, J., Zhang, L., Chen, Q., and Liu, Z-K.: On sluggish diffusion in FCC Al–Co–Cr–Fe–Ni high-entropy alloys: An experimental and numerical study. Metals 8, 16 (2018).
42.Kaur, N., Kumar, M., Sharma, S.K., Kim, D.Y., Kumar, S., Chavan, N.M., Joshi, S.V., Singh, N., and Singh, H.: Study of mechanical properties and high temperature oxidation behavior of a novel cold-spray Ni–20Cr coating on boiler steels. Appl. Surf. Sci. 328, 13 (2015).
43.Praveen, S., Anupam, A., Tilak, R., and Kottada, R.S.: Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media. Mater. Chem. Phys. 210, 57 (2018).

Keywords

Related content

Powered by UNSILO

First report on cold-sprayed AlCoCrFeNi high-entropy alloy and its isothermal oxidation

  • Ameey Anupam (a1), S. Kumar (a2), Naveen M. Chavan (a2), Budaraju Srinivasa Murty (a1) and Ravi Sankar Kottada (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.