Skip to main content Accessibility help

Fabrication, structure, and property of epoxy-based composites with metal–insulator core–shell structure fillers

  • Yujuan Niu (a1), Yuanyuan Bai (a1), Ke Yu (a1), Li He (a1), Feng Xiang (a1) and Hong Wang (a1)...


The Ag@SiO2 core–shell structure nanoparticles prepared by chemical method were dispersed into epoxy matrix. By comparing with the epoxy-based composites filled with the mixed Ag and SiO2 nanoparticles (Ag + SiO2), it is found that the Ag@SiO2 core–shell structure fillers had important effects on the improved dielectric properties of the Ag@SiO2/epoxy composites. The core–shell structure fillers introduce a duplex interfacial polarization and a small number of free charge carriers, which enhance the dielectric permittivity of the composites. At the same time, the insulating SiO2 shell layer changes the interfacial interaction between the Ag filler and the epoxy matrix, not only avoiding Ag particles to connect directly and aggregate together but also providing a rough surface to contact with the epoxy host, which enhances the compatibility between the Ag@SiO2 fillers and the epoxy matrix. As the Ag@SiO2 packing ratio increases, the permittivity of the composites straightly increases and the loss tangent decreases, reaching the maximum and minimum respectively with the filler loading up to 60%.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Zhou, T., Zha, J.W., Hou, Y., Wang, D.R., Zhao, J., and Dang, Z.M.: Surface-functionalized MWNTs with emeraldine base: Preparation and improving dielectric properties of polymer nanocomposites. ACS Appl. Mater. Interfaces 3, 4557 (2011).
2.Bowen, C.P., Newnham, R.E., and Randall, C.A.: Dielectric properties of dielectrophoretically assembled particulate-polymer composites. J. Mater. Res. 13, 205 (1998).
3.Putson, C., Lebrun, L., Guyomar, D., Muensit, N., Cottinet, P.J., Seveyrat, L., and Guiffard, B.: Effects of copper filler sizes on the dielectric properties and the energy harvesting capability of nonpercolated polyurethane composites. J. Appl. Phys. 109, 024104 (2011).
4.Bryning, M.B., Islam, M.F., Kikkawa, J.M., and Yodh, A.G.: Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites. Adv. Mater. 17, 1186 (2005).
5.Kashiwagi, T.; Du, F.M., Douglas, J.F., Winey, K.I., Harris, R.H., and Shields, J.R.: Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 4, 928 (2005).
6.Srivastava, R.K., Narayanan, T.N., Mary, A.P.R., Anantharaman, M.R., Srivastava, A., Vajtai, R., and Ajayan, P.M.: Ni filled flexible multi-walled carbon nanotube-polystyrene composite films as efficient microwave absorbers. Appl. Phys. Lett. 99, 113116 (2011).
7.Dimiev, A., Lu, W., Zeller, K., Crowgey, B., Kempel, L.C., and Tour, J.M.: Low-loss, high-permittivity composites made from graphene nanoribbons. ACS Appl. Mater. Interfaces 3, 4657 (2011).
8.Thomassin, J.M., Huynen, I., Jerome, R., and Detrembleur, C.: Functionalized polypropylenes as efficient dispersing agents for carbon nanotubes in a polypropylene matrix; application to electromagnetic interference (EMI) absorber materials. Polymer 51, 115 (2010).
9.Liu, H.Y., Shen, Y., Song, Y., Nan, C.W., Lin, Y.H., and Yang, X.P.: Carbon nanotube array/polymer core/shell structured composites with high dielectric permittivity, low dielectric loss, and large energy density. Adv. Mater. 23, 5104 (2011).
10.Dang, Z.M., Yuan, J.K., Zha, J.W., Zhou, T., Li, S.T., and Hu, G.H.: Fundamentals, processes and applications of high-permittivity polymer matrix composites. Prog. Mater. Sci. 57, 660 (2012).
11.Nan, C.W., Shen, Y., and Ma, J.: Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131 (2010).
12.Wang, G.S.: Enhanced dielectric properties of three-phase-percolative composites based on thermoplastic-ceramic matrix (BaTiO3 + PVDF) and ZnO radial nanostructures. ACS Appl. Mater. Interfaces 2, 1290 (2010).
13.Xie, L.Y., Huang, X.Y., Wu, C., and Jiang, P.K.: Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: A route to high dielectric constant materials with the inherent low loss of the base polymer. J. Mater. Chem. 21, 5897 (2011).
14.Shen, Y., Lin, Y.H., Li, M., and Nan, C.W.: High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Adv. Mater. 19, 1418 (2007).
15.Qi, L., Lee, B.I., Chen, S.H., Samuels, W.D., and Exarhos, G.J.: High-dielectric-constant silver-epoxy composites as embedded dielectrics. Adv. Mater. 17, 1777 (2005).
16.Xu, J.W. and Wong, C.P.: Low-loss percolative dielectric composite. Appl. Phys. Lett. 87, 082907 (2005).
17.He, F., Lau, S., Chan, H.L., and Fan, J.T.: High dielectric permittivity, and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21, 710 (2009).
18.Wei, T., Jin, C.Q., Zhong, W., and Liu, J.M.: High permittivity polymer embedded with Co/ZnO core/shell nanoparticles modified by organophosphorus acid. Appl. Phys. Lett. 91, 222907 (2007).
19.Zhou, Y.C., Wang, L., Zhang, H., Bai, Y.Y., Niu, Y.J., and Wang, H.: Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers. Appl. Phys. Lett. 101, 012903 (2012).
20.Dang, Z.M., You, S.S., Zha, J.W., Song, H.T., and Li, S.T.: Effect of shell-layer thickness on dielectric properties in Ag@TiO2 core@shell nanoparticles filled ferroelectric poly(vinylidene fluoride) composites. Phys. Status Solidi A 207, 739 (2010).
21.Zhang, Y., Wang, Y., Deng, Y.M., and Bai, J.B.: Enhanced dielectric properties of ferroelectric polymer composites induced by metal-semiconductor Zn-ZnO core-shell structure. ACS Appl. Mater. Interfaces 4, 65 (2012).
22.Wang, Y.U., Tan, D.Q., and Krahn, J.: Computational study of dielectric composites with core-shell filler particles. J. Appl. Phys. 110, 044103 (2011).
23.Graf, C., Vossen, D.L.J., Imhof, A., and Blaaderen, A.V.: A general method to coat colloidal particles with silica. Langmuir 19, 6693 (2003).
24.Shen, Y., Lin, Y.H., and Nan, C.W.: Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Adv. Funct. Mater. 17, 2405 (2007).
25.Chon, J., Ye, S., Cha, K.J., Lee, S.C., Koo, Y.S., Jung, J.H., and Kwon, Y.K.: High-K dielectric sol-gel hybrid materials containing barium titanate nanoparticles. Chem. Mater. 22, 19 (2010).
26.Dang, Z.M., Zhou, T., Yao, S.H., Yuan, J.K., Zha, J.W., Song, H.T., Li, J.Y., Chen, Q., Yang, W.T., and Bai, J.: Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 19, 6 (2007).
27.Psarras, G.C., Manolakaki, E., and Tsangaris, G.M.: Electrical relaxations in polymeric particulate composites of epoxy resin and metal particles. Composites Part A 33, 3 (2002).
28.Lunkenheimer, P., Bobnar, V., Pronin, A.V., Ritus, A.I., Volkov, A.A., and Loidl, A.: Origin of apparent colossal dielectric constants. Phys. Rev. B 66, 5 (2002).
29.Li, J.J., Seok, S.I., Chu, B.J., Dogan, F., Zhang, Q.M., and Wang, Q.: Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Adv. Mater. 2, 2 (2009).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed