Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T01:03:21.025Z Has data issue: false hasContentIssue false

Fabrication of well-dispersed barium titanate nanoparticles by the electrospray of a colloidal solution

Published online by Cambridge University Press:  31 January 2011

Keigo Suzuki*
Affiliation:
Murata Manufacturing Company Ltd., Nagaokakyo-shi, Kyoto 617-8555, Japan
Nobuhiko Tanaka
Affiliation:
Murata Manufacturing Company Ltd., Nagaokakyo-shi, Kyoto 617-8555, Japan
Keisuke Kageyama
Affiliation:
Murata Manufacturing Company Ltd., Nagaokakyo-shi, Kyoto 617-8555, Japan
Hiroshi Takagi
Affiliation:
Murata Manufacturing Company Ltd., Nagaokakyo-shi, Kyoto 617-8555, Japan
*
a) Address all correspondence to this author. e-mail: ksuzuki@murata.co.jp
Get access

Abstract

The electrospray of a colloidal microemulsion (ME) solution and subsequent on-line annealing were used to produce barium titanate nanoparticles (BTO-NPs). The solvent of the ME solution (cyclohexane) was replaced with a high-conductivity solution (solute: ammonium acetate, solvent: tetrahydrofurfuryl alcohol, conductivity: 3.1 × 10−2 S/m) to generate ultrafine droplets during the electrospraying. Well-dispersed and well-crystallized BTO-NPs with a perovskite structure were successfully fabricated at an annealing temperature of 1173 K. The size distribution of the BTO-NPs was successfully measured by applying a differential mobility analyzer and condensation nucleation counter to nanoparticles in-flight. The average size of the BTO-NPs was controlled within a range of 15 to 25 nm by changing the feeding rate. The electrospray of an ME solution with lower conductivity (solvent: 1-octanol, conductivity: 7.0 × 10−4 S/m) yielded amorphous particles with larger particle sizes. Thus, the electrospray of a high-conductivity solution is required to fabricate well-crystallized and dense BTO-NPs with smaller particle sizes.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kinoshita, K. and Yamaji, A.: Grain-size effects on dielectric properties in barium titanate ceramics. J. Appl. Phys. 47, 371 (1976).CrossRefGoogle Scholar
2Arlt, G., Hennings, D., and deWith, G.: Dielectric properties of fine grained barium titanate ceramics. J. Appl. Phys. 58, 1619 (1985).CrossRefGoogle Scholar
3Shaikh, A.S., Vest, R.W., and Vest, G.M.: Dielectric properties of ultrafine grained BaTiO3. IEEE Trans. Ultrason. Ferroelec. Freq. Control 36, 407 (1989).CrossRefGoogle ScholarPubMed
4Sakabe, Y., Wada, N., and Hamaji, Y.: Grain size effects on dielectric properties and crystal structure of fine-grained BaTiO3 ceramics. J. Korean Appl. Phys. 32, S260 (1998).Google Scholar
5Takeuchi, T., Tabuchi, M., Ado, K., Honjo, K., Nakamura, O., Kageyama, H., Suyama, Y., Ohtori, N., and Nagasawa, M.: Grain size dependence of dielectric properties of ultrafine BaTiO3prepared by a sol-crystal method. J. Mater. Sci. 32, 4053 (1997).CrossRefGoogle Scholar
6Xu, J.J., Shaikh, S., Vest, R.W., and High, K.: BaTiO3 films from metalloorganic precursors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 307 (1989).CrossRefGoogle ScholarPubMed
7Yamashita, Y., Yamamoto, H., and Sakabe, Y.: Dielectric properties of BaTiO3 thin films derived from clear emulsion of well-dispersed nanosized BaTiO3 particles. Jpn. J. Appl. Phys. 43, 6521 (2004).CrossRefGoogle Scholar
8Suzuki, K. and Kijima, K.: Dielectric properties of BaTiO3 films prepared by RF-plasma chemical vapor deposition. Jpn. J. Appl. Phys. 44, 8528 (2005).Google Scholar
9McCauley, D., Newnham, R.E., and Randall, C.A.: Intrinsic size effects in a barium titanate glass-ceramic. J. Am. Ceram. Soc. 81, 979 (1998).CrossRefGoogle Scholar
10Lu, S.W., Lee, Z.L., Wang, B.I., and Samuels, W.D.: Hydrothermal synthesis and structural characterization of BaTiO3 nanocrystals. J. Cryst. Growth 219, 269 (2000).CrossRefGoogle Scholar
11Wada, S., Chikamori, H., Noma, T., Suzuki, T., and Tsurumi, T.: Synthesis of nanometer-sized barium titanate crystallites using modified low temperature direct synthesis method and their characterization. J. Ceram. Soc. Jpn. 108, 728 (2000).CrossRefGoogle Scholar
12Zhang, M.S., Yu, J., Chen, W.C., and Yin, Z.: Optical and structural properties of pure and Ce-doped nanocrystals of barium titanate. Prog. Cryst. Growth Charact. Mater. 40, 33 (2000).CrossRefGoogle Scholar
13Viswanath, R.N. and Ramasamy, S.: Preparation and ferroelectric phase transition studies of nanocrystalline BaTiO3. Nanostruct. Mater. 8, 155 (1997).CrossRefGoogle Scholar
14Fukui, Y., Izumisawa, S., Atake, T., Hamano, A., Shirakami, T., and Ikawa, H.: Effects of heat treatment on the phase transitions in BaTiO3 fine particles. Ferroelectrics 203, 227 (1997).CrossRefGoogle Scholar
15Li, X. and Shih, W.H.: Size effects in barium titanate particles and clusters. J. Am. Ceram. Soc. 80, 2844 (1997).CrossRefGoogle Scholar
16Hsiang, H.I. and Yen, F.S.: Effect of crystallite size on the ferro-electric domain growth of ultrafine BaTiO3 powders. J. Am. Ceram. Soc. 79, 1053 (1996).CrossRefGoogle Scholar
17Tsunekawa, S., Ito, S., Mori, T., Ishikawa, K., Li, Z.Q., and Kawazoe, Y.: Critical size and anomalous lattice expansion in nanocrystalline BaTiO3 particles. Phys. Rev. B 62, 3065 (2000).CrossRefGoogle Scholar
18Begg, B.D., Vance, E.R., and Nowotny, J.: Effect of particle size on the room-temperature crystal structure of barium titanate. J. Am. Ceram. Soc. 77, 3186 (1994).CrossRefGoogle Scholar
19Wang, J., Fang, S.C., Ng, J., Gan, L.M., Chew, C.H., Wang, X., and Shen, Z.: Ultrafine barium titanate powders via microemulsion processing routes. J. Am. Ceram. Soc. 82, 873 (1999).CrossRefGoogle Scholar
20Asiaie, R., Zhu, W., Akbar, S.A., and Dutta, P.K.: Characterization of submicron particles of tetragonal BaTiO3. Chem. Mater. 8, 226 (1996).CrossRefGoogle Scholar
21Clark, I.J., Takeuchi, T., Ohtori, N., and Sinclair, D.C.: Hydro-thermal synthesis and characterization of BaTiO3 fine powders, precursors, polymorphism and properties. J. Mater. Chem. 9, 83 (1999).CrossRefGoogle Scholar
22Schlag, S. and Eicke, H.F.: Size driven phase transition in nano-crystalline BaTiO3. Solid State Commun. 91, 883 (1994).CrossRefGoogle Scholar
23Yen, F.S., Hsiang, H.I., and Chang, Y.H.: Cubic to tetragonal phase transformation of ultrafine BaTiO3 crystallites at room temperature. Jpn. J. Appl. Phys. 34, 6149 (1995).CrossRefGoogle Scholar
24Uchino, K., Sadanaga, E., and Hirose, T.: Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 72, 1555 (1989).CrossRefGoogle Scholar
25Buscaglia, M.T., Buscaglia, V., Viviani, M., Nanni, P., and Hanuskova, M.: Influence of foreign ions on the crystal structure of BaTiO3. J. Eur. Ceram. Soc. 20, 1997 (2000).CrossRefGoogle Scholar
26Suzuki, K. and Kijima, K.: Size-driven phase transition of barium titanate nanoparticles prepared by plasma chemical vapor deposition. J. Mater. Sci. Lett. 40, 1289 (2005).Google Scholar
27Suzuki, K. and Kijima, K.: Phase transformation of BaTiO3 nano-particles synthesized by RF-plasma CVD. J. Alloys Compd. 419, 234 (2006).CrossRefGoogle Scholar
28Suzuki, K. and Kijima, K.: Optical band gap of barium titanate nanoparticles prepared by RF-plasma chemical vapor deposition. Jpn. J. Appl. Phys. 44, 2081 (2005).CrossRefGoogle Scholar
29Suzuki, K., Terauchi, M., Uemichi, Y., and Kijima, K.: High energy-resolution electron energy-loss spectrosocopy study of electronic structures of barium titanate nanocrystals. Jpn. J. Appl. Phys. 44, 7593 (2005).Google Scholar
30Suzuki, K., Kageyama, K., Takagi, H., Sakabe, Y., and Takeuchi, K.: Fabrication of monodispersed barium titanate nanoparticles with narrow size distribution. J. Am. Ceram. Soc. 91, 1721 (2008).Google Scholar
31Milosevic, O.B., Mirkovic, M.K., and Uskokovic, D.P.: Characteristics and formation of mechanism of BaTiO3 powders prepared by twin-fluid and ultrasonic spray-pyrolysis methods. J. Am. Ceram. Soc. 79, 1720 (1996).CrossRefGoogle Scholar
32Ogihara, T., Aikiyo, H., Ogata, N., and Mizutani, N.: Synthesis and sintering of barium titanate fine powders by ultrasonic spray pyrolysis. Adv. Powder Technol. 10, 37 (1999).CrossRefGoogle Scholar
33Choi, G.J., Lee, S.K., Woo, K.J., Koo, K.K., and Cho, Y.S.: Characteristics of BaTiO3 particles prepared by spray-coprecipitation method using titanium acylate-based precursors. Chem. Mater. 10, 4104 (1998).CrossRefGoogle Scholar
34Lenggoro, I.W., Widiyandari, H., Hogan, C.J. Jr, Biswas, P., and Okuyama, K.: Colloidal nanoparticle analysis by nanoelectrospray size spectrometry with a heated flow. Anal. Chim. Acta 585, 193 (2007).CrossRefGoogle ScholarPubMed
35Lenggoro, I.W., Lee, H.M., and Okuyama, K.: Nanoparticle assembly on patterned “plus/minus” surfaces from electrospray of colloidal suspension. J. Colloid Interface Sci. 303, 124 (2006).CrossRefGoogle Scholar
36Lenggoro, I.W., Xia, B., Okuyama, K., and Fernandez de la Mora, J.: Sizing of colloidal nanoparticles by electrospray and differential mobility analyzer methods. Langmuir 18, 4584 (2002).Google Scholar
37Lenggoro, I.W., Okuyama, K., de la Mora, J.F., and Tohge, N.: Preparation of ZnS nanoparticles by electrospray pyrolysis. J. Aerosol Sci. 31, 121 (2000).Google Scholar
38Cloupeau, M. and Prunet-Roch, B.: Electrohydrodynamic spraying functioning modes: A critical review. J. Aerosol Sci. 25, 1021 (1994).CrossRefGoogle Scholar
39Knutson, E.O. and Whitby, K.T.: Aerosol classification by electric mobility: Apparatus, theory, and application. J. Aerosol Sci. 6, 443 (1975).CrossRefGoogle Scholar
40Seol, K.S., Tsutatani, Y., Camata, R.P., Yabumoto, J., Isomura, S., Okada, Y., Okuyama, K., and Takeuchi, K.: A differential mobility analyzer and a Faraday cup electrometer for operation at 200-930 Pa pressure. J. Aerosol Sci. 31, 1389 (2000).CrossRefGoogle Scholar
41Seol, K.S., Tsutatani, Y., Fujimoto, T., Okada, Y., and Nagamoto, H.: New in situ measurement method for nanoparticles formed in a radio frequency plasma-enhanced chemical vapor deposition. J. Vac. Sci. Technol., B 19, 1998 (2001).CrossRefGoogle Scholar
42Rossel-Llompart, J. and de la Mora, J.F.: Generation of monodisperse droplets 0.3 to 4 mm in diameter from electrified cone-jets of highly conducting and viscous liquids. J. Aerosol Sci. 25, 1093 (1994).CrossRefGoogle Scholar
43de la Mora, J.F. and Loscertales, I.G.: The current transmitted through an electrified liquid conical meniscus. J. Fluid Mech. 260, 155 (1994).Google Scholar
44Suzuki, K. and Kijima, K.: Synthesis and characterization of barium titanate nanoparticles by plasma chemical vapor deposition. J. Ceram. Soc. Jpn. 112, S916 (2004).Google Scholar
45Gannan, A.M.-Calvo, Davila, J., and Barrero, A.: Current and droplet size in the electrospraying of liquids scaling laws. J. Aerosol Sci. 28, 249 (1997).CrossRefGoogle Scholar
46Lenggoro, I.W. and Okuyama, K.: Generation of droplets and ions by electrospray. J. Soc. Powder Technol. Jpn. 37, 753 (2000).Google Scholar