Skip to main content Accessibility help
×
Home

Fabrication of eggshell membrane–based novel buccal mucosa–mimetic surface and mucoadhesion testing of chitosan oligosaccharide films

  • Ashwini Kumar (a1) and Awanish Kumar (a1)

Abstract

Fabrication of simulated buccal mucosa could minimize sacrificing the animals (rabbits and pigs) to extract buccal mucosa for in vitro testing of buccal formulations. Novel artificial buccal mucosa was fabricated using eggshell membrane, extracted from poultry egg, and bovine submaxillary mucin. Chitosan oligosaccharide (COS)–based blended films were fabricated using solvent casting technique. Patches of equal dimensions were cut precisely from whole film. COS-based blended patches were analyzed for their physicochemical and mechanical properties. These patches, proposed to be used for buccal drug delivery, were tested for their mucoadhesion timing using the artificial mucosal membrane. The COS–PVA–blended patch displayed better mucoadhesion than chitosan oligosaccharide–alginate–blended film with the fabricated simulated buccal mucosa. Novel buccal mucosa mimetic–surface such as the one reported in this research article could prove to be a very useful tool in minimizing the use of excised animal buccal mucosa for mucoadhesion testing of buccal drug delivery formulations. Novel COS-blended films were fabricated as a proposed mucoadhesive buccal drug delivery vehicle.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: awanik.bt@nitrr.ac.in, drawanishkr@gmail.com

References

Hide All
1.Shojaei, A.H.: Buccal mucosa as a route for systemic drug delivery: A review. J. Pharm. Pharm. Sci. 1, 15 (1998).
2.Bagan, J., Paderni, C., Termine, N., Campisi, G., Lo Russo, L., and Di Fede, O.: Mucoadhesive polymers for oral transmucosal drug delivery: A review. Curr. Pharm. Des. 18, 5497 (2012).
3.Stegemann, S., Gosch, M., and Breitkreutz, J.: Swallowing dysfunction and dysphagia is an unrecognized challenge for oral drug therapy. Int. J. Pharm. 430, 197 (2012).
4.Mennella, J.A., Spector, A.C., Reed, D.R., and Coldwell, S.E.: The bad taste of medicines: Overview of basic research on bitter taste. Clin. Ther. 35, 1225 (2013).
5.Barua, S., Kim, H., Jo, K., Seo, C.W., Park, T.J., Lee, K.B., Yun, G., Oh, K., and Lee, J.: Drug delivery techniques for buccal route: Formulation strategies and recent advances in dosage form design. J. Pharm. Invest. 46, 593 (2016).
6.Sudhakar, Y., Kuotsu, K., and Bandyopadhyay, A.K.: Buccal bioadhesive drug delivery—A promising option for orally less efficient drugs. J. Controlled Release 114, 15 (2006).
7.Madhav, N.V.S., Shakya, A.K., Shakya, P., and Singh, K.: Orotransmucosal drug delivery systems: A review. J. Controlled Release 140, 2 (2009).
8.Thornton, D.J.: From mucins to mucus: Toward a more coherent understanding of this essential barrier. Proc. Am. Thorac. Soc. 1, 54 (2004).
9.Bansil, R. and Turner, B.S.: Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11, 164 (2006).
10.Linden, S.K., Sutton, P., Karlsson, N.G., Korolik, V., and Mcguckin, M.A.: Mucins in the mucosal barrier to infection. Mucosal Immunol. 1, 183 (2008).
11.Zalewska, A., Zwierz, K., and Gindzieñski, A.: Structure and biosynthesis of human salivary mucins. Acta Biochim. Pol. 47, 1067 (2000).
12.De Almeida, P.D.V., Grégio, A.M.T., Machado, M.Â.N., De Lima, A.A.S., and Azevedo, L.R.: Saliva composition and functions: A comprehensive review. J. Contemp. Dent. Pract. 9, 072 (2008).
13.Kulkarni, U., Mahalingam, R., Pather, S.I., Li, X., and Jasti, B.: Porcine buccal mucosa as an in vitro model: Relative contribution of epithelium and connective tissue as permeability barriers. J. Pharm. Sci. 98, 471 (2009).
14.Janet Hoogstraate, A. and Bodd, H.E.: Methods for assessing the buccal mucosa as a route of drug delivery. Adv. Drug Delivery Rev. 12, 99 (1993).
15.Cui, Z. and Mumper, R.J.: Bilayer films for mucosal (genetic) immunization via the buccal route in rabbits. Pharm. Res. 19, 947 (2002).
16.Thirion-Delalande, C., Gervais, F., Fisch, C., Cuiné, J., Baron-Bodo, V., Moingeon, P., and Mascarrel, L.: Comparative analysis of the oral mucosae from rodents and non-rodents: Application to the nonclinical evaluation of sublingual immunotherapy products. PLoS One 12, 1 (2017).
17.Hall, D.J., Khutoryanskaya, O.V., and Khutoryanskiy, V.V.: Developing synthetic mucosa-mimetic hydrogels to replace animal experimentation in characterisation of mucoadhesive drug delivery systems. Soft Matter 7, 9620 (2011).
18.Cook, M.T., Smith, S.L., and Khutoryanskiy, V.V.: Novel glycopolymer hydrogels as mucosa-mimetic materials to reduce animal testing. Chem. Commun. 51, 14447 (2015).
19.da Silva, J.B., Khutoryanskiy, V.V., Bruschi, M.L., and Cook, M.T.: A mucosa-mimetic material for the mucoadhesion testing of thermogelling semi-solids. Int. J. Pharm. 528, 586 (2017).
20.Jacobsen, J., van Deurs, B., Pedersen, M., and Rassing, M.R.: TR146 cells grown on filters as a model for human buccal epithelium: I. Morphology, growth, barrier properties, and permeability. Int. J. Pharm. 125, 165 (1995).
21.Jacobsen, J., Nielsen, E.B., Brøndum-Nielsen, K., Christensen, M.E., Olin, H.D., Tommerup, N., and Rassing, M.R.: Filter-grown TR146 cells as an in vitro model of human buccal epithelial permeability. Eur. J. Oral Sci. 107, 138 (1999).
22.Khutoryanskiy, V.V.: Advances in mucoadhesion and mucoadhesive polymers. Macromol. Biosci. 11, 748 (2011).
23.Russo, E., Selmin, F., Baldassari, S., Gennari, C.G.M., Caviglioli, G., Cilurzo, F., Minghetti, P., and Parodi, B.: A focus on mucoadhesive polymers and their application in buccal dosage forms. J. Drug Delivery Sci. Technol. 1 (2015).
24.Muanprasat, C. and Chatsudthipong, V.: Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol. Ther. 170, 80 (2017).
25.Zhang, H., Huang, X., Sun, Y., Xing, J., Yamamoto, A., and Gao, Y.: Absorption-improving effects of chitosan oligomers based on their mucoadhesive properties: A comparative study on the oral and pulmonary delivery of calcitonin. Drug Delivery 23, 2419 (2016).
26.Kumar, A. and Kumar, A.: Development and characterization of tripolymeric and bipolymeric composite films using glyoxal as a potent crosslinker for biomedical application. Mater. Sci. Eng. C 73, 333 (2017).
27.Gal, J.Y., Fovet, Y., and Adib-Yadzi, M.: About a synthetic saliva for in vitro studies. Talanta 53, 1103 (2001).

Keywords

Fabrication of eggshell membrane–based novel buccal mucosa–mimetic surface and mucoadhesion testing of chitosan oligosaccharide films

  • Ashwini Kumar (a1) and Awanish Kumar (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed