Skip to main content Accessibility help
×
Home

Fabrication and strengthening of porous Si3N4 ceramics by replacement of oxide phase with Si3N4 at grain boundary through carbothermal nitridation

  • Qiang Zhi (a1), Zhaoyun Xu (a1), Huan Pan (a1), Jianfeng Yang (a1), Yuchen Deng (a1) and Bo Wang (a1)...

Abstract

Porous silicon nitride ceramics are attracting extensive attention due to its high strength and low dielectric loss. However, further strength enhancement at elevated temperatures is hindered by its intergranular phase, forming from sintering additives. This paper describes the fabrication of porous silicon nitride ceramic materials, by using a replacement method of carbothermal nitridation. The initial samples which were obtained from the sintering of mixed powder consisted of 95 wt% Si3N4 and 5 wt% Y2O3. After the removal of the oxide intergranular phase and the infiltration of mixtures of phenolic resins and silica sols, carbothermal nitridation process was carried out at 1550 °C for 2 h under nitrogen. X-ray diffraction and microstructural analysis revealed a complete replacement of oxide intergranular phases by the newly formed Si3N4 intergranular phase. The unmodified ceramic exhibited lower flexural strength at 1400 °C, which was only 50% of the room-temperature strength. Although the modified ceramic attained a slightly lower flexural strength at room temperature after the replacement of intergranular phase, its strength measured at 1400 °C could attain 90% of room-temperature strength.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: yang155@mail.xjtu.edu.cn

Footnotes

Hide All
b)

Present address: School of Materials Science and Engineering, Beifang University of Nationalities, Yinchuan 750021, China.

Contributing Editor: Nahum Travitzky

Footnotes

References

Hide All
1. Shan, S.Y., Yang, J.F., Gao, J.Q., Zhang, W.H., Jin, Z.H., Janssen, R., and Ohji, T.: Porous silicon nitride ceramics prepared by reduction-nitridation of silica. J. Am. Ceram. Soc. 88, 2594 (2005).
2. Yue, H.Z., Wang, X., and Tian, J.T.: Fabrication of Si3N4 reticulated porous ceramics reinforced by needle-like β-Si3N4 . Ceram. Int. 40, 8525 (2014).
3. Li, Y., Chen, F., Li, L., Zhang, W.R., Yu, H.L., Shan, Y.B., Shen, Q., and Jiang, H.Y.: Gas pressure sintering of arbitrary porous silicon nitride ceramics with high mechanical strength. J. Am. Ceram. Soc. 93, 1565 (2010).
4. Kawai, C. and Yamakawa, A.: Effect of porosity and microstructure on the strength of Si3N4: Designed microstructure for high strength, high thermal shock resistance, and facile machining. J. Am. Ceram. Soc. 80, 2705 (1997).
5. Shigegaki, Y., Brito, M.E., Hirao, K., Toriyama, M., and Kanzaki, S.: Strain tolerant porous silicon nitride. J. Am. Ceram. Soc. 80, 495 (1997).
6. Yang, J.F., Deng, Z.Y., and Ohji, T.: Fabrication and characterization of porous silicon nitride ceramics using Yb2O3 as sintering additive. J. Eur. Ceram. Soc. 23, 371 (2003).
7. Yang, J.F., Ohji, T., and Niihara, K.: Influence of yttria-alumina content on sintering behavior and microstructure of silicon nitride ceramics. J. Am. Ceram. Soc. 83, 2094 (2000).
8. Hirosaki, N., Okada, A., and Matoba, K.: Sintering of Si3N4 with the addition of rare-earth oxides. J. Am. Ceram. Soc. 71, C-144 (1988).
9. Matovic, B., Rixecker, G., and Aldinger, F.: Densification of Si3N4 with LiYO2 additive. J. Am. Ceram. Soc. 87, 546 (2004).
10. Hampshire, S. and Pomeroy, M.J.: Grain boundary glasses in silicon nitride: A review of chemistry, properties and crystallization. J. Eur. Ceram. Soc. 32, 1925 (2012).
11. Iskoe, J.L., Lange, F.F., and Diaz, E.S.: Effect of selected impurities on the high temperature mechanical properties of hot-pressed silicon nitride. J. Mater. Sci. 11, 908 (1976).
12. Lange, F.F. and Davis, B.I.: Compressive creep of Si3N4/MgO alloys. J. Mater. Sci. 15, 601 (1980).
13. Tu, W.C., Lange, F.F., and Evans, A.G.: Concept for a damage-tolerant ceramic composite with “Strong” interfaces. J. Am. Ceram. Soc. 79, 417 (1996).
14. Rendtel, A., Hubner, H., Herrmann, M., and Schubert, C.: Silicon nitride/silicon carbide nanocomposite materials: II, hot strength, creep, and oxidation resistance. J. Am. Ceram. Soc. 81, 1109 (1998).
15. Mandal, H. and Thompson, D.P.: New heat treatment methods for glass removal from silicon nitride and sialon ceramics. J. Mater. Sci. 35, 6285 (2000).
16. Cinibulk, M.K. and Thomas, G.: Fabrication and secondary-phase crystallisation of rare-earth disilicate-silicon nitride ceramics. J. Am. Ceram. Soc. 75, 2037 (1992).
17. Bernard-Granger, G., Crampon, J., Duclos, R., and Cales, B.: Glassy grain boundary phase crystallization of silicon nitride: Kinetics and phase development. J. Mater. Sci. Lett. 14, 1362 (1995).
18. Besson, J.L., Billieres, D., Rouxel, T., Goursat, P., Flynnr, R., and Hampshire, S.: Crystallization and properties of a Si–Y–Al–O–N glass ceramic. J. Am. Ceram. Soc. 76, 2103 (1993).
19. Ziegler, A., Cinibulk, M.K., Kisielowski, C., and Ritchie, R.O.: Atomic-scale observation of the grain-boundary structure of Yb-doped and heat-treated silicon nitride ceramics. Appl. Phys. Lett. 91, 141 (2007).
20. Jack, K.H. and Wilson, W.I.: Ceramics based on Si–Al–O–N and related systems. Nature Phys. Sci. 238, 28 (1972).
21. Yang, J.F., Beppu, Y., Zhang, G.J., Ohji, T., and Kanzaki, S.: Synthesis and properties of porous single-phase β-SiAlON ceramics. J. Am. Ceram. Soc. 85, 1879 (2002).
22. Yang, J.F., Zhang, G.J., She, J.H., Ohji, T., and Kanzaki, S.: Improvement of mechanical properties and corrosion resistance of porous β-SiAlON ceramics by low Y2O3 additions. J. Am. Ceram. Soc. 87, 1714 (2004).
23. Cheong, D.S. and Sanders, W.A.: High-temperature deformation and microstructural analysis for silicon nitride–scandium(III) oxide. J. Am. Ceram. Soc. 75, 3331 (2005).
24. Tani, E., Umebayashi, S., Kishi, K., Kobayashi, K., and Nishijima, M.: Gas-pressure sintering of Si3N4 with concurrent addition of Al2O3 and 5 wt% rare earth oxide: High fracture toughness Si3N4 with fiber-like structure. Am. Ceram. Soc. Bull. 65, 1311 (1986).
25. Choi, H.J., Lee, J.G., and Kim, Y.W.: Oxidation behavior of hot-pressed Si3N4 with Re2O3 (Re = Y, Yb, Er, La). J. Eur. Ceram. Soc. 19, 2757 (1999).
26. Cinibulk, M.K., Thomas, G., and Johnson, S.M.: Strength and creep behavior of rare-earth disilicate-silicon nitride ceramics. J. Am. Ceram. Soc. 75, 2050 (1992).
27. Guo, S.Q., Hirosaki, N., Yamamoto, Y., Nishimura, T., and Mitomo, M.: Improvement of high-temperature strength of hot-pressed sintering silicon nitride with Lu2O3 addition. Scr. Mater. 45, 867 (2001).
28. Tatarko, P., Kaiarov, M., Dusza, J., and Sajgalik, P.: Influence of rare-earth oxide additives on the oxidation resistance of Si3N4-SiC nanocomposites. J. Eur. Ceram. Soc. 33, 2259 (2013).
29. Kasiarova, M., Tatarko, P., Burik, P., Dusza, J., and Sajgalik, P.: Thermal shock resistance of Si3N4, and Si3N4–SiC ceramics with rare-earth oxide sintering additives. J. Eur. Ceram. Soc. 34, 3301 (2014).
30. Koh, Y.H., Kim, H.W., and Kim, H.E.: Mechanical properties and oxidation resistance of Si3N4–SiC nanocomposites. Scr. Mater. 44, 2069 (2001).
31. Park, H., Kim, H.E., and Niihara, K.: Microstructure and high-temperature strength of Si3N4–SiC nanocomposites. J. Eur. Ceram. Soc. 18, 907 (1998).
32. Wang, F., Jin, G.Q., and Guo, X.Y.: Sol–gel synthesis of Si3N4, nanowires and nanotubes. Mater. Lett. 60, 330 (2006).
33. Weimer, A.W., Eisman, G.A., Susnitzky, D.W., Beaman, D.R., and Mccoy, J.W.: Mechanism and kinetics of the carbothermal nitridation synthesis of α-silicon nitride. J. Am. Ceram. Soc. 80, 2853 (1997).

Keywords

Related content

Powered by UNSILO

Fabrication and strengthening of porous Si3N4 ceramics by replacement of oxide phase with Si3N4 at grain boundary through carbothermal nitridation

  • Qiang Zhi (a1), Zhaoyun Xu (a1), Huan Pan (a1), Jianfeng Yang (a1), Yuchen Deng (a1) and Bo Wang (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.